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Abstract  Evaluation of multicomponent synergy is a critical point in current drug 
combination studies. However, it is still an ongoing challenge to prioritize the synergistic 
combination from various pharmacological agents in a high throughput manner. Here we 
proposed a network target-based approach termed NIMS (Network target-based Identification 
of Multicomponent Synergy), and showed that NIMS can not only recover the agent pairs with 
known synergistic effects, but also successfully predict synergistic agents from 
anti-angiogenic traditional Chinese medicine.   
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1 Introduction 
The multicomponent therapeutics, in which two or more agents (chemical 

substances or herbs) interact with multiple targets simultaneously, is considered as a 
rational and efficient form of therapy designed to control complex diseases [1,2]. One 
of the fundamental advantages of multicomponent therapeutics is the production of 
“synergy”, that is, the combinational effect to be greater than the sum of the 
individual effects, making multicomponent therapeutics a systematic approach, 
rather than the reductionism of an additive effect. Understanding multicomponent 
synergy is critical for developing a novel strategy to conquer complex diseases. It is 
believed that combinations of agents can effectively reduce side effects and improve 
adaptive resistance, thereby increasing the likelihood of conquering complex 
diseases, such as cancer, in a synergistic manner [3].   

Evaluation of multicomponent synergy is usually implemented experimentally 
in a case-by-case approach [4]. Although large-scale experimental methods have 
been launched to screen favorable drug combinations by disease-relevant phenotypic 
assays [5], high-throughput identification of the synergistic agents arising from 
numerous individual agents remains an unresolved issue. Because the number of 
possible agent combinations is large, even in the case of a small collection of 
therapeutic agents, computational approaches that take advantage of the rapid 
accumulation of large-scale data may provide a more promising and desirable 
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method for multicomponent drug studies. Currently, computational methods for the 
evaluation of multicomponent therapeutics focus largely on two approaches. The first 
method is to identify and optimize multiple target interventions by modeling 
signaling pathways or specific processes and is usually applied to small scale 
problems [6-8]. One of limitations of this approach is the fact that cross-talk, or 
interaction among pathways, is widely present in complex diseases, suggesting that 
pathways should be integrated rather than treated separately [9,10]. The second 
approach is to measure the efficacy of drugs, especially multi-target drugs, by using 
network properties [11]. However, finding ways to evaluate multicomponent 
therapeutics and sort order for synergistic agent combinations is still a considerable 
challenge. Therefore, novel computational approaches are urgently required for 
feasible and efficient identification of multicomponent synergy. 

In this work, we report a novel algorithm, called Network target-based 
Identification of Multicomponent Synergy (NIMS), to address the network 
target-based virtual screen and assess the synergistic strength of multicomponent 
therapeutics. Then, NIMS was used to prioritize synergistic combinations in TCM 
and a case study was subjected to experimental verification.  

2 Results 
2.1 Pipeline of NIMS 

NIMS transfers the relationship among agents to the interactions among the target 
or responsive gene products of agents in the context of a network specific for a 
disease or pathological process. This hypothesis may be reasonable in many 
situations especially when synergy occurs only if the effects of individual agents are 
mediated through independent mechanisms. In NIMS, genes or gene products 
affected by individual agents are termed agent genes, and the disease-specific 
network serves as the network target of drugs.   

Two elements of NIMS are Topology Score (TS) and Agent Score (AS) (Figure 
1). TS is derived from topological features of the background network. Because the 
choke points or hub nodes may play a critical role in the network [12], the more 
important the agent-target gene or gene product in the background network is, the 
stronger effect that agent will produce. We also assume that if an agent pair produces 
a possible synergy, their target genes should be adjacent in the network. Thus, for a 
candidate agent pair, agent1 and agent2, we defined TS for agent1 and agent2 by given: 

 
where IP(v) is calculated by integrating three types of network topology parameters, 
Betweenness, Closeness and a variant of the Eigenvector PageRank [13], through 
Principal Component Analysis (PCA). The negative exponential function is utilized 
to weight the interaction of two agents based on the shortest path length. min(di,j) is 
the minimum shortest path from node i of agent1 to all the nodes of agent2, whereas 
min(dj,i) is the minimum shortest path from node j of agent2 to all the nodes of 
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agent1. We only consider the nearest connection between agent1 gene and agent2 
gene in the background network.  

 
Figure 1. Pipeline of NIMS: ranking the synergistic effect of n agents paired with a 
given agent.  

As agents with independent mechanism but treating similar diseases may be 
more likely to produce a synergistic effect, we introduced AS, a concept transferred 
from the phenotype similarity [14,15], to quantify the similarity score between two 
agent-target phenotypes and fine-tune the rank results. The agent-target phenotypes 
were identified from the OMIM database. If an agent gene falls into the gene set of 
a phenotype, this phenotype is considered as the corresponding agent-target 
phenotype. The similarity between two agent-target phenotypes quantifies the 
overlap of their OMIM descriptions and is calculated by a text mining method [14]. 

The AS for agent1 and agent2
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Ultimately, NIMS produces the synergy score, S

-target jth 
phenotype, and N is the total number of phenotype pairs.  

1,2, of agent1 and agent2 by 
calculating S1,2 = TS1,2 x AS1,2

2.2 Application and experimental verification of NIMS 

. High score means high synergy degree. To avoid 
the potential competition of both agents on the same targets, we only consider that 
the synergy score from 0 to 0.9 are the effective range. 

We applied NIMS to prioritize synergistic agent pairs from 63 manually 
collected agents for treating a disease instanced by angiogenesis, a key pathological 
process in various diseases such as cancer and rheumatoid arthritis [16]. The NIMS 
synergy scores for all agent pairs ranged from 0.199270 to 0.012959. From the 
outputs of NIMS, we firstly checked the rank of five agent pairs with known 
synergy and found that they were ranked in the top layer. For example, the synergy 
scores of both 5-fluorouracil (5-FU) combined with vinblastine 

Next, an anti-angiogenesis cell proliferation assay was conducted to validate 
NIMS predictions. A TCM anti-angiogenic alkaloid, Sinomenine [19], was selected 

[17] (Rank = 2) and 
5-FU combined with rapamycin [18] (Rank = 3) entered the top three.  

as Agentx in Figure 1. Agent pairs were sampled from five intervals of the rank list 
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Figure 2. Anti-angiogenesis synergistic effects of five agent pairs. (a-e) The solid line 
denotes the inhibition rate of HUVEC cell proliferation in a dose-dependent manner. The 
dashed line denotes the additive effects calculated by the Bliss independence model. The 
gray column denotes the optimal dose and ratio of each pair. (f) The MIIR value for the 
synergistic effects produced by five agent pairs corresponds well with the NIMS ranks. 

 
including all 62 agents matched with Sinomenine. Here, we only considered 
commercially available agents of known chemical structures. This restriction left five 
Sinomenine partners, namely Luteolin, Quercetin, Honokiol, Matrine and 
Paeoniflorin. To determine the synergy strength of the agent pairs, low-dose 
combinations with more than a 70% inhibition rate were regarded as effective [20]. 
Using the Maximum Increased Inhibition Rate (MIIR) measure for each combination 
(Figure 2), we found that the highest MIIR 26.83% was reached by Sinomenine 
combined with Matrine ((S):(M)), whereas the lowest MIIR 1.86% was reached by 
Sinomenine combined with Paeoniflorin ((S):(P)). This rank order of agent pairs is 
identical to the order predicted by NIMS. 

2.3 Robustness of NIMS 
NIMS integrated three measures, namely Betweenness, Closeness and PageRank 

to capture node importance, IP(v) from different aspects. In the undirected 
angiogenesis network, we found that all three measures are highly correlated and the 
majority (94.81%) of their variance can be explained by the primary eigenvector. The 
robustness of NIMS was also addressed with respect to both agent genes and the 
background network. By adding or removing agent genes randomly, the permutation 
test results showed that the Spearman Rank Correlation Coefficient (SRCC) was 
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relatively stable when adding genes, but the SRCC decreased dramatically when 
some typical genes were removed (Figure 3a-b). This suggested that the NIMS 
synergy score may be determined largely by some key agent genes, and the rank 
results will remain relatively stable as long as these key genes are preserved. Such 
phenomena also agree well with that the power law networks are robust with respect 
to deletion of random nodes, but fragile with respect to deletion of hubs [21]. 
Moreover, by deleting or importing additional interactions at different percentages in 
the angiogenesis network, we found that the SRCC, with the original NIMS score, 
was quite stable even when 50% of the edges were removed or added (Figure 3c). 

 
Figure 3. Permutation tests to assess the robust performance of NIMS. The permutation 
tests include (a) TS, (b) AS, and (c) the background network calculated by the average SRCC 
between the permutation outputs and the original scores. 

2.4 Comparison with meet/min 
To determine whether the synergy rank of agent pairs could be obtained from 

corresponding agent genes alone, regardless of network knowledge, we used the 
meet/min method, a similarity measurement between two gene sets that discards the 
network information [22], to rank the agent pairs. Compared with the experimental 
results, we found that the performance of the meet/min method was relatively poor in 
ranking the pairs containing Sinomenine. 

3 Discussion 
Recently, with the growing understanding of complex diseases, the focus of drug 

discovery has shifted from the well-accepted “one target, one drug” model designed 
toward a single target to a new “multi-target, multi-drug” model aimed at 
systemically modulating multiple targets [23]. In this work, we treated network as a 
target and established a novel approach, NIMS, to prioritizing the multicomponent 
synergy between agent pairs by combined network topology and agent similarity, 
with regard to agent target gene products as well as phenotypes. To demonstrate the 
capability of NIMS, we applied this algorithm to the prioritization of synergistic 
anti-angiogenesis agent pairs from an empirical multicomponent therapeutic system, 
TCM. Our results show that NIMS, especially when used against the angiogenesis 
network, could not only successfully recover known synergistic pairs, but also rank 
the anti-angiogenesis synergistic agents matched with a particular agent, Sinomenine 
(Figure 2). These findings demonstrate the effectiveness of NIMS as a tool for 
screening multicomponent synergy, which is also flexible to allow for connection 
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and collaboration with other segmental and global modeling methods [8,25].  
NIMS uses both agent gene information and network topology information. We 

demonstrated that NIMS is robust to the collected agent genes if the key genes are 
reserved (Figure 3a-b). Moreover, NIMS is also relatively robust to the background 
network, although available networks, such as the PPI network, are still incomplete 
and biased (Figure 3c) [24]. We hypothesize that the following aspects of NIMS are 
responsible for such robust performance. Above all, the gene set information of each 
agent not only reflects the knowledge of agent similarity, but also determines the 
meet/min coefficient. We detected a relatively high correlation between the meet/min 
coefficient and the NIMS synergy score for all Sinomenine-related agent pairs, 
ensuring the stable performance of NIMS against different types of networks. Next, 
NIMS only uses a small fraction of the network around the nodes of agent genes. 
Thus, it is relatively insensitive to changes of the whole background network but very 
sensitive to changes in key genes.  

For the limitations of NIMS, firstly, we only consider the responsive genes 
associated with a given disease or pathological process. It is believed that the more 
precise the disease-specific network target is chosen, the more accurate predictions 
will be obtained. Secondly, for agent genes, the present work only considered 
responsive genes rather than drug target associated with a limited number of TCM 
agents. Hopefully, with more rich and more precise information is revealed for more 
agents, these limitations could be alleviated and NIMS could be extended to more 
complicated conditions or more than two agents. Thirdly, as the initial effort for 
prioritizing synergistic agent combination in a computational framework, NIMS 
currently is a little bit simplified since it considers only part of the synergistic effects 
at the molecular level, and currently does not make the distinction for the synergistic 
and antagonistic effects. Further studies will be devoted to quantitative analysis of 
synergy, tissue-level synergy analysis, and pattern comparison between synergism 
and antagonism by integrating multilayer -omic data, spatio-temporal information as 
well as network state information such as the network Yin-Yang imbalance [26].  

In summary, our work demonstrates that network target-based methods are of 
importance for estimating synergistic combinations, and NIMS can serve as a 
first-step approach for high-throughput identification of multicomponent synergy. 

4 Methods 
4.1 Data gathering 

By reading more than 2,000 references regarding agent actions from both 
PubMed and the China National Knowledge Infrastructure (http://www.cnki.net), 
available agent genes and agent-target phenotypes were manually collected. A total 
of 736 non-redundant agent genes were obtained for 61 commonly used TCM 
agents (49 herbs and 12 herb-derived compounds) and 2 chemicals with known 
synergistic action. We also collected all the agent-target phenotype similarity scores 
from the study of van Driel et al [14] for calculating Agent Score (AS). 

4.2 Angiogenesis network construction 
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The angiogenesis gene network was constructed by the LMMA method we 
developed previously [27] and used as the network target for NIMS. By using the 
keyword “Angiogenesis OR Neovascularization”, we retrieved 49,885 PubMed 
abstracts (until Feb 9, 2007), in which 2,707 genes were identified with Entrez gene 
ids and served as nodes of the angiogenesis network. Two genes were considered 
linked if they had any relationship in the PPI from HPRD (release 7) or pathway 
interactions from KEGG.  

4.3 NIMS robustness analysis 
We conducted permutation tests and measured SRCC between the permutated 

and original TS or AS scores for the changes of three centrality parameters, collected 
agent genes as well as the background networks. In this step, agent genes were 
removed or added randomly from the angiogenesis network, changing 10% of the 
genes at a time. Each iteration of adding or removing genes was repeated 100 times. 
For angiogenesis network, we deleted or imported additional interactions at different 
percentages, each repeated 20 times, and measured the synergy score. 

4.4 Angiogenesis in vitro assay 
We employed the commonly-used Endothelial Cell Proliferation assay to evaluate 

NIMS predicted synergistic effects on angiogenesis. By using the Bliss independence 
model [28], the synergistic strength was determined by calculating: 
MIIR=max(IRsyn–IRadd), where IRsyn and IRadd denote inhibition rates of experimental 
measurement and the Bliss additive value of an agent pair at a certain dose/ratio. 
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