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Abstract Along with the advent of DNA microarray technology, gene expression profiling has
been widely used to study molecular signatures of many diseases and to develop molecular diag-
nostics for disease prediction. In class prediction problems using expression data, gene selection is
essential to improve the prediction accuracy and to identify informative genes for a disease. In this
paper we improve the multi-class support vector machine-recursive feature elimination (MSVM-
RFE) by combining minimum redundancy maximum relevancy (mRMR) criterion and introducing
the kernel. The result is the better performance with a smaller number of irredundant genes for
multi-class datasets.

1 Introduction
Microarray technology allows us to measure the expression levels of thousands of

genes simultaneously resulting in a vast pool of data. Normally, the gene expression
dataset contains small number of samples and very large number of genes. This charac-
teristic makes gene selection a necessary procedure to improve the classification accuracy.
Furthermore, the selected handful important genes can be used to design less expensive
experiments for disease prediction.

Among the existing numerous gene selection methods, support vector machine-based
recursive feature elimination (SVM-RFE) [1]is a widely used method conducting gene
selection in a backward elimination procedure. It was initially proposed for binary clas-
sification. The gene selection for multi-class gene expression data has begun to draw
more and more attention from researchers. SVM-RFE has been extended into multi-class
MSVM-RFE to solve multi-class problems using one-versus-all [2, 3] or all together tech-
niques [4]. However, the genes selected using MSVM-RFE may have a degree of redun-
dancy which may reduce the classification performance.

In this paper we improve MSVM-RFE by combining minimum redundancy maxi-
mum relevancy (mRMR) criterion [5], resulting a new mixed method. We also introduce
kernel for MSVM-RFE to overcome the limitation of linear MSVM-RFE. The proposed
mixed method provides minimum redundancy genes which broadly represent whole gene
expression data leading to more accurate classification.
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2 Background
2.1 Crammer and Singer multiclass SVM (CSSVM)

The CSSVM[8] is a multiclass method of “all-together" implementation by solving
one single optimization problem. Given the training set T = {(x1,y1), · · · ,(xl ,yl)}, where
xi ∈ Rn is the input, and yi ∈ {1, · · · ,k} is the output or the class label. The input x is
mapped into a Hilbert space H by a function x=Φ(x) : x∈Rn→ x∈H . It is required to
find k hyperplanes to construct the decision function f (x)= argmaxr=1,··· ,k ∑l

i=1 αr
i K(xi,x),

where K(x,x′) = (Φ(x) ·Φ(x′)) is the kernel function.
To get αr

i ,r = 1, · · · ,k, i = 1, · · · , l in the decision function, we need to solve the dual
problem:

max
α

−1
2

l

∑
i=1

l

∑
j=1

K(xi · x j)αT
i α j−

l

∑
i=1

αT
i ei, (1)

s.t.
k

∑
r=1

αr
i = 0, i = 1, · · ·, l, (2)

αr
i 6 0, i f yi 6= r, i = 1, · · ·, l.r = 1, · · ·,k, (3)

αr
i 6C, i f yi = r, i = 1, · · ·, l.r = 1, · · ·,k, (4)

where α =(α1, · · · ,αl),αi =(α1
i , · · · ,αk

i )
T, i= 1, · · · , l, ei =(e1

i , ···,ek
i )

T,er
i = 1−δyi,r, i=

1, · · · , l,r = 1, · · · ,k, and K(x,x′) = (Φ(x) ·Φ(x′)) is the kernel function.

2.2 Vector Output Support Vector Machine(VOSVM)
The VOSVM[9] is another multi-class method which comes from a simple rein-

terpretation of the normal vector of the separating hyperplane. Given the training set
T = {(x1,y1), · · · ,(xl ,yl)}, where xi ∈ Rn is the input, yi ∈ {1, · · · ,k} is the output. In or-
der to establish the decision function, the output yi is mapped into ŷi ∈ Rk, and we define
ŷi = ((ŷ)1, · · · ,(ŷ)k)

T as follows

(ŷi)t =

{
1, if item i belongs to t-th class, t = 1, · · · ,k;

− 1
k−1

, if others.
(5)

The decision function is presented as f (x) = argmaxr=1,··· ,k ŷT
r ∑l

i=1 αiyiK(xi,x), where
K(x,x′) = (Φ(x) ·Φ(x′)) is the kernel function. To get αi, i = 1, · · · , l in the decision
function, the following QP problem is solved

max
α

−1
2

l

∑
i=1

l

∑
j=1

αiα j(yi · y j)K(xi,x j)+
l

∑
i=1

αi, (6)

s.t. 0 6 αi 6C, i = 1, · · · , l, (7)

where α = (α1, · · · ,αl)
T and K(x,x′) = (Φ(x) ·Φ(x′)) is the kernel function.

2.3 SVM-RFE and its extension
The SVM-RFE([1])is a simple and efficient method which conducts gene selection

in a backward elimination procedure for the standard SVM. This method starts from all
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features and eliminates one feature at a time. The square coefficient
1
2

w2
j , j = 1, · · · ,n of

weight vector w = (w1, · · · ,wn)
T obtained from the primal problem of the standard SVM

can be used as a criterion for feature ranking. In fact,it removes the feature with smallest
ranking criterion. Repeat this procedure until obtaining the smaller feature subset. Af-
terward, [4] has extended SVM-RFE to linear multi-class SVM. Similar to the derivation

of ranking criterion for binary SVM-RFE,
1
2

k
∑

r=1
(wr j)

2, j = 1, · · · ,n is obtained as an ap-

propriate ranking criterion for linear “all-together" SVMs. In addition, [1] has introduced
kernel for the binary SVM-RFE but there is no corresponding research for MSVM-RFE.
So we concentrate on the kernel MSVM-RFE in this paper.

2.4 The minimum Redundancy and Maximum Relevancy (mRMR)
criterion

The mRMR criterion is to find the feature subset in which features have maximal
relevancy to class and minimum redundant among themselves. The detail can be seen in
[5].

3 Kernel MSVM-RFE combined with mRMR criteria
In this section, we propose a variant of MSVM-RFE, which extends MSVM-RFE to

non-linear case by introducing kernel function and combines with mRMR criterion.
Let us recall the optimization problems (1)∼(4) and (6)∼(7), both of their objective

functions can be formulated as follows:

J =
1
2

αTHα− eTα, (8)

where α is the solution of dual problem (1)∼(4)(or (6)∼(7)) and H is a matrix with the
kernel.

To compute the weightiness of the j-th feature, which is deleted. One leaves the
α unchanged and one re-computes matrix H(− j), where the notation (− j) means that
component j has been removed. Then the following equation evaluate the change in
objective function (8) caused by removing the j-th feature

DJ( j) =
1
2

αTHα− 1
2

αTH(− j)α. (9)

The input corresponding to the smallest DJ( j) will be eliminated. This criterion can

be used in the kernel MSVM-RFE. Specially in the linear case,
1
2

αTHα =
1
2

k
∑

r=1
||wr||2,

therefore DJ( j) =
1
2

k
∑

r=1
wr j

2. So the method is identical to the linear MSVM-RFE.

Now we give the detailed algorithm by combining the kernel MSVM-RFE with mRMR
criterion (K-MSVM-RFE+mRMR) for the feature selection as follows.

Algorithm: K-MSVM-RFE+mRMR
(1)Given the training set T = {(x1,y1), · · · ,(xl ,yl)}, xi = ([xi]1, · · · , [xi]n) ∈ Rn is the

input, yi ∈ {1,2, · · · ,k}, i = 1, · · · , l is the output, g j = ([x1] j, · · · , [xl ] j)
T is the feature

Improving MSVM-RFE for Multiclass Gene Selection 45



Table 1: The information of four datasets

Dataset Samples Number of features ClassesOriginal Pre-processed
NCI Staunton 58 7129 3144 8

MLL 72 12582 10930 3
11Tumors 174 12533 9700 11

GCM 198 16063 14122 14

vector, which comprises the j-th feature of all inputs, where j = 1, · · · ,n, c = {1, · · · ,k}
is the target class;

(2)Initialize Z = [1, · · · ,n] be the subscript index of candidate feature set S= [g1, ...,gn],
Ranked feature set R = [ ];

(3)Solve the optimization (1)∼(4)(or (6)∼(7))using the features in Z, and get the op-
timal solution α;

(4)Compute DJ( j) given by (9);
(5)Evaluate the relevancy of each feature to class and mutual information to features

in Z m j =
I(g j;c)

1
|Z| ∑

i∈Z
I(g j;gi)

, where I(x;x′) is the mutual information of x and x′;

(6)Calculate h j the score of each feature by h j =
|DJ( j)|

max
j∈Z

(|DJ( j)|) +
m j

max
j∈Z

(m j)
;

(7)Remove the feature with the minimum score e = argmin
j∈Z

h j;

(8)Eliminate e from Z, then add it into R, R = [e;R];
(9)If Z = [ ], stop; otherwise, go to step (3).
Note: the MATLAB sentence [ ] is used as an empty set.

4 Numerical Experiments
In order to test the effectiveness of our feature selection methods, we choose four

multiclass gene expression datasets: NCI Staunton ([10]), MLL ([11]), 11Tumors ([12])
and GCM ([13]). Our experiments are executed on the pre-processed data. Some basic
information of the four datasets are summarized in Table 1.

Before calculating the mutual information, we discretized the training dataset using
threshold decided by the mean µ and the standard deviation σ of each gene expression.
In the expression of each gene, data largerd than µ + 0.5σ will be changed into 2; data
smaller than µ−0.5σ will be changed into−2; data between µ−0.5σ and µ +0.5σ will
be changed into 0.

Normally, the number of genes is very larger (several thousands) in gene expression
data. In order to speed up the selection procedure, we remove 10% genes of the remainder
genes in the first few iterations, and then remove one gene at a time when the number of
gene is equal to or less than 200.
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Figure 1: The first row figures are the comparisons of the VOSVM-RFE and K-VOSVM-
RFE+mRMR on MLL, NCI, 11TUMOR and GCM; the second row figures are the comparisons
of K-CSSVM-RFE and K-CSSVM-RFE+mRMR on MLL, NCI, 11TUMOR and GCM.

Table 2: MLL
Method Gene# Error

L-VOSVM-RFE 26 2.56%
K-VOSVM-RFE 24 0.99%
K-VOSVM-RFE+mRMR 16 0.69%
CSSVM-RFE 41 2.78%
K-CSSVM-RFE 44 0.69%
K-CSSVM-RFE+mRMR 17 0.69%

Table 3: NCI
Method Gene# Error

L-VOSVM-RFE 152 38.3%
K-VOSVM-RFE 161 31.16%
K-VOSVM-RFE+mRMR 55 28.76%
L-CSSVM-RFE 143 33.14%
K-CSSVM-RFE 126 30.65%
K-CSSVM-RFE+mRMR 53 29.17%

In our experiments, RBF kernel is choosed K(x ·x′) = exp(−γ||x−x′||2). The penalty
parameter C is fixed as 100. We employ 4-fold stratified cross validation [14] to choose
the optimal parameter γ and evaluate the feature selection performance.

In the Figure 1, the classification error rates on 1-200 genes of the K-MSVM-RFE+
mRMR criterion are plotted, where the K-MSVM is CSSVM or VOSVM. These 200
genes are in the front rank in the algorithm, so they are the more important genes. It
can be seen from the Figure 1 that the K-MSVM-RFE+mRMR gives low classification
error in most part of gene subset when the number of genes is less than 100. This method
selects the genes based on their effect on classification accuracy and makes sure that they
are least redundant among themselves. So we may say that our algorithm has superior
when small number genes are selected.

In the Table 2 ∼ 5, we report the numbers of selected genes and the corresponding
error rates by implementing the linear MSVM-RFE (L-MSVM-RFE), the kernel MSVM-
RFE (K-MSVM-RFE) and the K-MSVM-RFE+mRMR on the four datasets: MLL, NCI,
11TUMOR and GCM, where the MSVM is CSSVM or VOSVM. And “Gene#" is the
numbers of selected genes. “Error" is the error rate of the 4-fold stratified cross validation.
As shown by the table, the K-MSVM-RFE gives better performance than L-MSVM-RFE.
When combining the kernel MSVM-RFE and mRMR criterion it results in fewer num-
bers of selected genes and the classification errors decrease sometimes. The results are
improved in four gene expression datasets except for 11TUMOR.
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Table 4: 11TUMOR
Method Gene# Error

L-VOSVM-RFE 179 5.37%
K-VOSVM-RFE 108 1.54%
K-VOSVM-RFE+mRMR 53 1.54%
linear CSSVM-RFE 161 3.28%
K-CSSVM-RFE 129 1.45%
K-CSSVM-RFE+mRMR 58 1.67%

Table 5: GCM
Method Gene# Error

L-VOSVM-RFE 178 20.21%
K-VOSVM-RFE 135 14.1%
K-VOSVM-RFE+mRMR 69 14.1%
linear CSSVM-RFE 159 17.91%
K-CSSVM-RFE 127 14.66%
K-CSSVM-RFE+mRMR 71 13.90%

Table 6: The genes selected by the K-MSVM-RFE+mRMR method.

Index Accession Description
10797 1914_at Human cyclin A1 mRNA, complete cds

7135 4052_at
Human rearranged mRNA for glutamine
synthase

8105 34840_at we38g03.x1 Homo sapiens cDNA, 3’ end
11366 1325_at Human Smad1 mRNA, complete cds

11297 1389_at
Human common acute lymphoblastic
leukemia antigen (CALLA) mRNA

9005 38017_at Human MB-1 gene, complete cds

3277 38242_at
Homo sapiens B cell linker protein BLNK
mRNA, alternatively spliced, complete cds

Now, taking MLL data as an instance we give some annotation of the selected genes.
MLL data consists of three classes of leukemia. As we apply our gene selection method
40 times on different subsets of the data set (4-fold stratified cross-validation repeated 10
times), we actually obtained 40 different gene subsets. After computing the frequency
of each gene appearing in all the 40 gene subsets, we can identify the important genes
which have been most frequently selected. We give these selected genes by K-MSVM-
RFE+mRMR method in Table 6 and plot the expression levels of six informative genes in
three different class samples in Figure 2. We can see from the mean expression level of
gene on each class sample, these informative genes have great different expression level
in different class samples. So they are the useful genes for classification.

Some genes selected by our algorithms have been identified as tumor or tissue specific-
genes. Such as human cyclin A1 was cloned as an A-type cyclin that is highly ex-
pressed in acute myeloid leukaemia (AML). It suggests that cyclin A1 may have a role in
hematopoiesis. High levels of cyclin A1 expression are especially associated with certain
leukemias blocked at the myeloblast and promyelocyte stages of differentiation [15, 16].
MB-1 is a sensitive and specific reagent for B-lineage blasts that will aid in the classifica-
tion of B-cell precursor ALL and in the identification of biphenotypic leukemia presenting
as AML [17]. BLNK also consistently identified as one of the most informative genes.
It has been proposed that BLNK deficiency is a primary cause of B-lineage acute lym-
phoblastic leukemia (ALL) [18, 19]. cALLA, initially known as CD10, was identified as
one of the earliest markers expressed by leukemic cells of the lymphoblastic lineage [20].
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Figure 2: The expression levels of the first six genes in Table 6 on different class samples, –is the
mean expression level of one class samples

5 Discussion
In this paper we have explored a new multi-class gene selection method that combines

the kernel MSVM-RFE with the mRMR criteria. It can be observed from the numerical
result that the introducing of kernel breaks the limitation of linear kernel and makes the
gene selection with better performance firstly. After combining with mRMR criteria, the
method selects least redundant genes with low classification error rate. The selected gene
set can give better representation of whole dataset. It should be pointed out that it is time
consuming to find the optimal parameter for classifies, due to the introducing of the kernel
function. It is meaningful to construct a fast approach to select the optimal of parameters
to reduce the time of gene selection.
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