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Abstract  As an important covalent post-translational modification, Tyrosine nitration is 
closely related to the causes of various diseases. However, its mechanism is still largely 
unknown. Based on experimentally verified tyrosine nitration sites, we introduced a novel 
computational approach to analyze tyrosine nitration. Nearest Neighbor algorithm armed by 
maximum relevancy minimum redundancy feature selection approach was used to construct 
the tyrosine nitration predictor. The problem of the imbalance of dataset sizes was dealt with 
by dividing large dataset into several smaller ones. Analysis of the selected features shows 
some interesting phenomena of the tyrosine nitration, which could be helpful for further 
computational and experimental investigations. 
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1 Introduction 
Tyrosine nitration occurs widely in association with important 

pathophysiological consequences such as diabetes [1] and neurodegenerative 
diseases [2]. The nitration of tyrosine residues constitutes the substitution of 
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hydrogen by a nitro group in the 3-position of the phenolic ring and represents a 
modification produced by nitric oxide-derived oxidants such as nitrogen dioxide 
radical and peroxynitrite [3]. 

A few of progress has been made in detecting nitrated proteins using specific 
antibodies against protein 3-nitrotyrosine [4]. It is a nearly impossible process to 
solve every nitration site structure of protein complex through molecular biological 
methods. Compared to the experimental researches, the computational methods 
have the advantage of high efficiency and low cost to deal with large scale of data. 
As no predictor is available for predicting nitrated tyrosine, we developed a novel 
sequence-based method for predicting protein tyrosine nitration in hopes that it may 
become a useful computational tool in the relevant areas. Nearest Neighbor 
algorithm armed by maximum relevancy minimum redundancy feature selection 
was used to construct the predictor. Our results provide clues of nitration 
mechanisms, and useful insights to elevate protein tyrosine nitration. 

2 Materials and methods 
2.1 Data set 

Searching NCBI using “nitration” led to 123 protein sequences. To diminish 
bias caused by high similarities between sequences, we removed sequences which 
have similarities higher than 70% with other sequences using CD-HIT[5]. Finally, 
48 sequences were retained. We used a sliding window to scan the protein 
sequences to obtain peptides of symmetrical flanking residues of each tyrosine in 
the proteins. The 30 amino acid residues with 15 ones on each side of each tyrosine 
were seen as a sample. The peptides in a sliding window formed from an 
experimentally confirmed nitrated tyrosine was labeled as a positive sample, while 
the peptides formed from other tyrosine were labeled as negative ones. With the 
sampling process, we finally got 781 samples, with 56 positive and 725 negative 
ones, respectively. 

2.2 Representing proteins with biochemical and physicochemical 
features 

To develop a method for predicting a protein-related system, one of the most 
important things is to formulate the sample of a protein with the core features that 
have intrinsic correlation with the predicted target. Here, we used a set of features 
based AAIndex (http://www.genome.ad.jp/aaindex/) [6] to represent protein 
samples in terms of their biochemical and physicochemical properties. 506 indices 
from AAIndex were used to represent one amino acid. Since each sample contains 
30 amino acids in our study, totally 506×30=15180 features were generated. 

2.3 Dealing with the imbalanced data 
In this study, the size of negative sample set is much larger than the size of 

positive one (nearly 13 times of). This imbalance can hamper a training process and 
bias the classification in favor of the class with more samples. To deal with this 
problem, we generated 13 different dataset from the original one. All these dataset 
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contained the 56 positive training samples, while only the 725 negative samples 
were split equally into 13 portions. Thus 13 training datasets were built with a 
proportion of around 1:1 between the positive and negative samples in each training 
dataset. Based on these 13 datasets, 13 independent classifiers were constructed 
with virtually no data imbalance.  

2.4 Classifier construction using Nearest Neighbor Algorithm 
In this study, Nearest Neighbor algorithm (NNA) [7-8]was used as the 

classification model for the nitrated site prediction. It makes its decision based on 
similarities between the feature vector of the testing sample and all the feature 
vectors of the training dataset. The class of the sample in the training set, i.e. the 
nearest neighbor, which has the highest similarity with the training sample, would 
be designated to be the class of the testing sample. In this study, the distance 
between two vectors ip  and jp  is defined as: 
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where i jp p⋅  is the inner product of ip  and jp , and || ||p represents the 
module of vector p . 

2.5 Jackknife cross-validation 
In Jackknife cross-validation, each sample in the data set would be tested by the 

classifier based on all the other samples, so every sample would be tested exactly 
once. Overall accurate prediction rate is used for quantifying the evaluation, which 
is defined as the rate between the number of corrected predicted samples and the 
number of the samples in the whole dataset. 

2.6 Maximum Relevancy Minimum Redundancy 
Maximum Relevancy Minimum Redundancy (mRMR) [9] is used for feature 

evaluation of nitration prediction. It ranks features in the feature set according to 
each feature’s relevancy to the target variable and redundancy to other features. To 
quantify relevancy and redundancy, mutual information (MI), which estimates the 
relationship between different vectors, is calculated and denoted as I. Based on MI, 
an mRMR function is defined as: 

,
1max ( , ) ( ) ( 1, 2,..., )

j t
i s

j j if f
I f c I f f j n

m∈Ω
∈Ω

 
− = 

 
∑

              (2) 
where Ωs and Ωt are the already-selected feature set and to-be-selected feature 

set, while m, n are the sizes of these two feature sets, respectively. The earlier a 
feature is selected by this function, the higher rank it would get, and the more 
important it would be regarded. 

For there are 13 independent classifiers built, each of them needs to be 
processed by mRMR to gain their own feature set. So mRMR was run 13 times. 
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2.7 Incremental Feature Selection 
An incremental feature selection is conducted for each of the independent 

predictor with the ranked features. Features in a set are added one by one from 
higher to lower rank. If one feature is added, a new feature set is obtained, then we 
get N feature sets where N is the number of features, and the i-th feature set is: 

1 2{ , ,..., } (1 )i iS f f f i N=  ≤ ≤                  (3) 
Based on each of the N feature sets, an NNA predictor was constructed and 

tested with Jackknife cross-validation test. With N overall accurate prediction rates, 
positive accurate rates and negative accurate rates calculated, we obtain an IFS table 
with one column being the index i and the other three columns to be the overall 
accurate rate, positive accurate rate and negative accurate rate, respectively. 
Soptimal=Sn is regarded as the optimal feature set if and only if the row with index n 
contains the highest overall accurate rate. 

2.8 Obtaining important features for analysis 
The final feature set, in which the features are regarded as important for the 

prediction, is obtained as the union of the 13 individual feature sets. This final 
feature set is used for subsequent analysis. 

3 Results 
3.1 Results of feature selections and feature set integration 

There are two lists in each of the 13 mRMR outputs. The first one is MaxRel 
table ranking each feature according to the relevancies to the target. Only the 
second list, the mRMR table that ranks the features according to both relevancies 
and redundancies, was used for feature selection. Based on the mRMR feature list, 
IFS was run for each predictor, yielding the IFS tables. Table 1 shows the number of 
features selected by the IFS processes for the 13 independent predictors and the 
highest overall accurate rate obtained by Jackknife cross-validation. Combining the 
13 individual optimal feature sets, we obtained the union optimal feature set which 
contained 1014 features. 

 
Table 1. The number of features in each individual optimal feature set for each 
classifier. 

The index of classifier The number of features The overall accurate rate in 
Jackknife cross-validation 

1 95 0.8125 
2 226 0.8304 
3 52 0.8928 
4 234 0.8036 
5 72 0.8125 
6 42 0.8125 
7 59 0.7321 
8 138 0.8750 
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9 66 0.7321 
10 77 0.7768 
11 62 0.8571 
12 94 0.7857 
13 84 0.7523 

 

3.2 Results of feature clustering and the evaluation of its reliability 
For further study of nitration mechanisms, a feature clustering was done to the 

final selected features described above. 5 different feature groups were constructed 
based on the physicochemical and biochemical properties: alpha and turn 
propensities, beta propensities, composition, hydrophobicity, physicochemical 
properties. Among the 1014 features selected, 712 ones were successfully clustered 
in these groups. Figure 1 shows the number of features located in each feature 
group. 

 

 
Figure 1. The number of selected features in each feature group. A stands for alpha 
and turn propensities, while B for beta propensities, C for composition, H for 
hydrophobicity, and P for physicochemical properties. 

 
To assure the reliability of the union optimal feature set and its clustering, we 

applied the same method of clustering to the 13 individual optimal feature sets of 
the 13 dataset, respectively. Based on the grouping results, we got a clustering 
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vector [ , , , , , ] ,  [1,13]T
i A B C H O Pn n n n n n i= ∈V , where nA, nB, nC, nH, nO, nP 

represent the number of features grouped into the group of “alpha and turn 
propensities”, “beta propensities”, “composition”, “hydrophobicity”, “others”, and 
“physicochemical properties”. We also got the similar vector V for the union 
optimal feature set. Using a metric of vector angle cosine which is similar to the 
similarity defined for our NNA classifiers between V and each of the Vi, we could 
evaluate the similarity of clustering results between union optimal feature set and 
each of the individual optimal feature sets (see Table 2). It is easy to see that for all 
the 13 individual dataset, the clustering similarity score was higher than 0.9, 
indicating the high reliability of our union optimal feature set and its clustering. 

 
Table 2. The similarity score of clustering vector between the union optimal feature 
set and each of the 13 individual optimal feature set. 

The index of classifier The similarity score 

  
1 0.9700998 
2 0.9602483 
3 0.9059108 
4 0.9927712 
5 0.972646 
6 0.9814104 
7 0.95496 
8 0.9842654 
9 0.9838158 
10 0.9829018 
11 0.911443 
12 0.9817525 
13 0.9888647 

 

4 Discussion 
According to our analysis, the features about hydrophobicity and α and turn 

propensities related to the secondary structure of neighboring residues are essential 
to the microenvironment determining the protein tyrosine nitration (PTN). With a 
hydropathy index, tyrosine is mildly hydrophilic, a characteristic which is explained 
by the hydrophobic aromatic ring carrying a hydroxyl group. In consequence 
tyrosine is often surfaced and exposed in proteins (only 15% of tyrosine residues 
are at least 95% buried) and should thus be available for nitration [10]. 
Hydrophobicity of the residues surrounding the target tyrosine seems to play an 
important role in determining susceptibility towards PTN [10]. 
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It has been studied that many factors favor the selectivity of nitration of Tyr 
residues: (i) The accessibility of the Tyr residue to nitrating agents; (ii) The 
presence of the Tyr residue in a loop structure formed by residues Gly or Pro; and 
(iii) The presence of the Tyr in proximity to a negatively charged residue [10]. 
Nitration of residues may be favored by their proximity to the negatively charged 
phosphate backbone of DNA in the nucleosome. A combination of the 
physi-chemical features such as the positions in the secondary structure (α and turn 
propensities), the accessibility of Tyr to the nitrating species and their proximities to 
Cys, or negatively charged residues which are related to hydrophobicity may be 
responsible for the nitration of Tyr sites [10-11].  

Tyrosine nitration has been revealed as a relevant post-translational modification 
linked to nitro-oxidative stress conditions and pathophysiology. Our investigation 
may provide some useful insights to elevate protein tyrosine nitration from a 
biomarker to an important post-translational modification. 

5 Conclusion 
In this paper, we described a novel computational approach to analyze tyrosine 

nitration based on experimentally verified tyrosine nitration sites. Nearest Neighbor 
algorithm is armed by a feature selection process combining mRMR and IFS. Our 
result may provide insights and knowledge to protein tyrosine nitration and induce 
further study of the topic. 
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