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Abstract Considering biochemistry mechanism of biology growth and the complementarity of the
nutrition which is caused by the animalcule decomposition of the propagation reliquiae, as well as
its losing caused by physical therapies, we set up a nonlinear dynamical Nutrition- E. prolifera(N-
E) model. The model consists of two coupled ordinary differential equations, which explicitly
simulates the concentrations of nutrient and E. prolifera in the oceanic mixed layer. Then, using
analytical techniques, we focus on the existence and nature of steady states. Specially we analyze
the dynamical stability of the steady state of the model. With the results, several measures are given
for controlling the E. prolifera disaster.
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1 Introduction
The sunlit surface waters of the world’s oceans are populated by tiny plankton. Plank-

ton is a general term used to describe freely-floating and weakly-swimming marine and
freshwater organisms. Plankton may be broadly divided into two groups. Phytoplankton
are the plants and are mostly microscopic in size and unicellular; they are consumed by
zooplankton, the animals, which in turn are eaten by larger organisms. In addition to
their role at the base of the food chain, phytoplankton influence the global carbon cycle,
with consequences for climate change that are at present undetermined[1]. Direct mea-
surement of plankton biomass is difficult and expensive, and so the modeling of plankton
populations is an essential tool to improve our understanding of the physical and biologi-
cal processes which affect the population dynamics.

Phytoplankton are the source of almost all energy passing through aquatic food webs
and comprise some 40 percents of the total fixed global primary productivity[2]. A large
component of this productivity can be attributed to the occurrence of both seasonal and
sporadic algae blooms that form as patches over the ocean’s surface in areas of localized
nutrient enrichment[3, 4, 5, 6]. Once triggered, bloom events lead to rapid rates of in-
crease in phytoplankton growth. Biomass can sometimes increase by several orders of
magnitude, only to decrease or crash as suddenly as the bloom mysteriously appeared. As
phytoplankton sink out of the water column, they transport large quantities of carbon in a
manner that intimately connects these primary producers with the earthąŕs global carbon
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cycle. Hence phytoplankton have the capability of directly affecting large-scale global
processes such as ocean-atmosphere dynamics and climate change. In freshwater lakes,
rivers, and reservoirs, phytoplankton communities can have a major impact on ecosys-
tem dynamics. Here, the appearance of algae blooms are often a signal of dangerous
eutrophication and may result in major water-quality problems.

E. prolifera, distributing worldly in the inter-tidal zone of sea, is one of the most
common fouling green algae which is one kind of phytoplankton. It is one of the dominant
seaweeds in the littoral zone of China. It distributes in a wide variety of coastal water,
such as brackish-waters of inner bays and estuaries and so on and greatly affects the
carbon cycle and recovery of the contaminant water body to border on the sea and often
contributes to the formation of the so-called "green tide", which causes ecological and
indirect economic damages [7]. For example, in early July 2008, E. prolifera bloom
threatened the upcoming Olympic sailing events in Qingdao, China.

Until recently, there has been little research describing the generic mathematical mech-
anisms that underlie the dynamics of E. prolifera succession and blooms. So it is nec-
essary to study the population dynamics from mathematical review and provide some
measures for controlling the E. prolifera disaster. In this paper, we give a Nutrition-E.
prolifera(N-E) model firstly. Then we analyze the existence and stability of the steady
state. At last, with the results, several measures are given for controlling the E. prolifera
disaster.

2 Nonlinear dynamical model of E. prolifera
Here, we present a model that illustrates the important dynamic properties of E. pro-

lifera population. Although the model is of a very simple structure, it is an extremely
useful one, and its dynamics are inherently generic to more complex models. The model
consists of only two kinds of variables: nutrients levels, Ni, and E. prolifera biomass, E.
It is assumed that small levels of nutrients enter the system at a slow but constant rate.
E. prolifera biomass, E, rely on nutrient "uptake" for growth and are removed from the
water column through mortality and sinking. In this model, we consider the regenera-
tion of nutrient due to bacterial decomposition of the dead biomass. The importance of
nutrient recycling has been well documented[8] and extensively investigated for closed
ecological systems. Nutrient recycling in many of these studies is usually assumed to be
instantaneous. In other words, the time that is required to regenerate nutrient from dead
plankton via bacterial decomposition is neglected in the model formulation. This gives
the following system:

{ dE
dt = uptake− (death+ sinking),
dNi
dt = input −uptake− loss+ recycling.

(1)

The functional forms used are

{ dE
dt = ∑n

i=1 fi(Ni,E)− γEE,
dNi
dt = N fi − fi(Ni,E)− γNiNi + εiE,

(2)

where E and Ni are the concentrations of E. prolifera and all kinds of nutritions such
as phosphorus(P), nitrogen(N) and so on, respectively. γE is the sum of mortality and
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sinking rates of E. prolifera, and γNi are the loss rates of nutritions. fi(Ni,P) is a function
describing the nutrient uptake E. prolifera. N fi are constant nutrient input rates. εi is E.
prolifera recycling rate, with 0 < εi < γE .

It is not difficult to describe the process from mathematical view. But, if we blindly
pursue the biodiversity and the ecological integrity, it is not propitious for us to under-
stand the essential character of ecosystem dynamics. So, based on ecodynamics, all the
nutritions are attributed to an overall which is denoted by one variable. For example, we
can use N to denote the total concentration of all the nutritions. The model of E. prolifera
can be rewritten as follows.

{ dE
dt = f (N,E)− γEE,
dN
dt = N f − f (N,E)− γNN + εEE,

(3)

where f (N,E) is expressed by Lotka-Volterra Equation[9]. Then the model can be written
as follows:

{ dE
dt = αmEN − γEE,
dN
dt = N f −αmEN − γNN + εEE.

(4)

There are five parameters in this model. Nutrient inputs flow into the system at a con-
stant rate, N f , and nutrient uptake rate of E. prolifera is determined by parameter αm. In
equations (4), the bilinear Lotka-Volterra interaction, NE, implies that the probability of
a E. prolifera utilizing a nutrient is determined by the product of their relative abundances
(or proportional probabilities). The parameters γE and γN are the percapita- mortality/loss
rates of E. prolifera and nutrients. εE is the E. prolifera recycling rate. All the parameters
are positive, with 0 < εE < γE .

The interactions between these components are illustrated in Fig.1. The arrows indi-
cate flows of matter through the system.
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Figure 1: Interactions between nutrients(N) and E. prolifera(E). Arrows indicate flows of matter
through the system. Arrows not starting or not finishing at a compartment indicate input to and
losses from the system. "uptake" means E. prolifera uptaking nutrients, and "recycling" meaning
regeneration of nutrient due to bacterial decomposition of the dead E. prolifera.

3 Nonlinear dynamics of E. prolifera model
In this section we will analyze the stability of the equilibrium points of Eq.(4). Let

{ dE
dt = 0,
dN
dt = 0,

(5)
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one can get the equilibrium points of Eq.(4):

E∗
1 = 0,N∗

1 =
N f

γN

and
E∗

2 =
αmN f − γNγE

(γE − εE)αm
,N∗

2 =
γE

αm

In order to study the stability of these two equilibrium points, we take coordinate
conversion. Let e = E −E∗,n = N−N∗ where(E∗,N∗) are the coordinates of equilibrium
points of Eq.(4), then from Eq.(4), one can get

{ de
dt = αm(e+E∗)(n+N∗)− γE(e+E∗),
dn
dt = N f −αm(e+E∗)(n+N∗)− γN(n+N∗)+ εE(e+E∗).

(6)

The Jacobin matrix of Eq.(6) at the equilibrium point (0,0) is

J =

[
αmN∗− γE αmE∗

−αmN∗+ εE −αmE∗− γN

]
. (7)

For the first equilibrium point (E∗
1 ,N

∗
1 ) = (0, N f

γN
),

J1 =

[ αmN f
γN

− γE 0

−αmN f
γN

+ εE −γN

]
, (8)

The eigenvalues of J1 areλ1 = −γN ,λ2 =
αmN f

γN
− γE . Thus, according to the theory of

stability, we get the following conclusion.

Conclusion 1. When γE >
αmN f

γN
, λ1 < 0 and λ2 < 0. That is to say, the equilibrium

point (E∗
1 ,N

∗
1 ) = (0, N f

γN
) of model Eq.(4) is asymptotically stable, if γE >

αmN f
γN

.

For the second equilibrium point (E∗
2 ,N

∗
2 ) = (

αmN f −γN γE
(γE−εE )αm

, γE
αm

),

J2 =

[
0 αmN f −γN γE

γE−εE

εE − γE −αmN f −γN εE
γE−εE

]
, (9)

The eigenvalues of J2 are λ1,2 = −αmN f −γN εE
γE−εE

±
√
(

αmN f −γN εE
γE−εE

)2 −4(αmN f − γNγE). Ac-
cording to the theory of stability, we get the second conclusion as follows.

Conclusion 2. The second equilibrium point (E∗
2 ,N

∗
2 ) = (

αmN f −γN γE
(γE−εE )αm

, γE
αm

) of model

Eq.(4) is asymptotically stable, if γE <
αmN f

γN
; Otherwise, the equilibrium point (E∗

2 ,N
∗
2 )

is not stable.
Proof. If αmN f − γNεE = 0, considering γE > εE , thenαmN f − γNγE < 0, thus λ1,2 =

±
√

−(αmN f − γNγE). One of the eigenvalues has positive real part;
If αmN f −γNεE < 0, from the expression of λ1,2, we can see that one of the eigenvalues

is positive real number;
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If αmN f −γNεE > 0 and αmN f −γNγE < 0, then one of the eigenvalues is positive real
number;

If αmN f −γNεE > 0 and αmN f −γNγE > 0, the two eigenvalues both have negative real
parts. Considering γE > εE , if αmN f − γNγE > 0, then αmN f − γNεE > 0 holds. Simply, if
αmN f − γNγE > 0, the two eigenvalues both have negative real parts.

In conclusion, if and only if αmN f −γNγE > 0, i.e. γE <
αmN f

γN
, both of the eigenvalues

of J2 have negative real parts, that is to say the equilibrium point (E∗
2 ,N

∗
2 ) of model Eq.(4)

is asymptotically stable; Otherwise, the equilibrium point (E∗
2 ,N

∗
2 ) is not stable.

4 Conclusion and discussion
In this paper, we have shown a nonlinear dynamical model of E. prolifera population

and analyzed the stability of the equilibrium points of this model. The conditions for each
equilibrium point to be stable are given. From the conclusion we get above, we know that
there are two approaches to control the E. prolifera disaster.

On one hand, we can adjust the parameters to satisfy γE >
αmN f

γN
which guarantees the

first equilibrium point (E∗
1 ,N

∗
1 ) = (0, N f

γN
) to be stable. That is to say, E. prolifera biomass,

E, will asympotically approaches zero after a long time. Thus the E. prolifera disaster
disappears. In order to satisfy γE >

αmN f
γN

, we can increase the mortality/loss rates γE and
γN or decrease the input rate N f of nutrient and the uptake rate αm. The most doable
measure is to decrease the input rate N f of nutrient. That is to say reduce nutrient inputs
flow into the system.

On the other hand, we can adjust the parameters to make the first coordinate of the sec-
ond equilibrium point E∗

2 =
αmN f −γN γE
(γE−εE )αm

be less than the threshold of E. prolifera biomass
which cause the E. prolifera disaster takes place. Thus, after a long time E. prolifera
biomass, E, asympotically approaches a value which can not result in a E. prolifera dis-
aster. The concrete measure is similar as above.

The model given in this paper is a simple one which does not consider the zooplankton
graze E. prolifera. In our later paper, we will consider the impact of zooplankton.
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