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Abstract  In this study, we investigate the relative organization of three (not independent) 
categorizations of metabolites—pathways, subcellular localizations and network clusters both 
qualitatively and quantitatively and further characterize the categories from topological point 
of view. The picture of the metabolism we obtain is that of peripheral modules, characterized 
both by being dense network clusters and localized to organelles, connected by a central, 
highly connected core. Pathways typically run through several network clusters and 
localizations, connecting them laterally. The significant overlap between organelles, pathways 
and network clusters suggest that, to some extent, the topology of metabolic networks could 
spell out the spatial isolations of cellular architectures and functional coherence of metabolic 
systems. Such systems level analysis of the correlation between different categorizations is 
helpful for understanding the influence of intracellular organization on the regulation of 
metabolic processes. 
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1 Introduction 
With the advent of databases attempting to record the entire biochemical 

reaction systems of different organisms, a host of research questions concerning 
system-wide organization of biochemical processes became accessible to 
researchers on metabolism. One way of characterizing the large-scale structure of 
the metabolism is to divide the metabolites into categories, capturing some roles or 
functions of the compound. These categories can be defined in different ways. Most 
conspicuous as building blocks of cellular organization are perhaps spatially 
isolated entities like organelles, so one way of classifying metabolites is to associate 
them to the organelles they are present in. Another way would be to take the full 
metabolic reaction system and try to find categories based on the network topology. 
Early studies of the topology of metabolic networks found e.g. a skewed degree 
distribution, hierarchical modular organization, and a well-defined core and a 
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modular periphery (see Refs. [1] and [2] for reviews). Furthermore, this topological 
structure is, it has been argues, to some extent correlated with metabolic 
functionality [3-5].  

A feature differentiating eukaryotic from prokaryotic cells is the presence of 
internal membrane-bound structures called organelles, such as nucleus, 
mitochondrion, and lysosome. The subcellular compartmentalization by these 
organelles aggregates enzymes and substrates into spatially isolated localizations, 
and can therefore regulate different metabolic processes. Some algorithms have 
been proposed to predict the subcellular localization of proteins or metabolic 
enzymes [6]. However, researchers have not studied the organizational features of 
these units quantitatively much before. Recently, this has been possible thanks to 
two databases that include information on subcellular localization [7, 8]. 

In this study we investigate how three ways of categorizing metabolites—into 
pathways, localization and network clusters—are interrelated, and what their 
relationship can tell us about the system-wide organization of metabolism. We used 
data from the BiGG database on the human metabolism [8], which includes the lists 
of catalyzed reactions, localizations of metabolites and annotated pathways. We 
constructed block models of metabolites to visualize the correlations between 
different categories and measured the overlap of these categories. 

2 Methods 
2.1 Data description 

Our raw data was obtained from the BiGG [8] database of metabolic networks. 
This database includes a list of 3311 reactions occurring in eight subcellular 
compartments:Cytoplasm [c]; Extracellular Space [e]; Mitochondrion [m]; Golgi 
Apparatus [g]; Endoplasmic Reticulum [r]; Lysosome [l]; Peroxisome [x]; Nucleus 
[n]. The pathway annotations originated from the KEGG database [9] where 
reactions are labelled by the pathways as follows: Carbohydrate Metabolism(C); 
Energy Metabolism(E); Lipid Metabolism(L); Nucleotide Metabolism(N); Amino 
Acid Metabolism(A); Glycan Biosynthesis and Metabolism(G); Metabolism of 
Cofactors and Vitamins(V); Xenobiotics Biodegradation and Metabolism(X); 
Biosynthesis of Secondary Metabolites(S); Transport(T). We assign the pathways of 
a reaction to its participating metabolites. Every metabolite is thus associated with 
at least one pathway. When we analyze the network topological features of the 
nodes, we need each metabolite to belong to only one pathway. To achieve this, we 
added two pathway categories for metabolites in multiple pathways according to the 
following scheme: 
 For metabolites belonging to two pathway categories including transport, we 

assign them to the other pathway category than transport. 
 For metabolites that belong to at least two pathway categories not including 

transport, assign them to the Multiple Functions pathway (M). 
 For metabolites that belong to at least three pathway categories including 

transport, assign them to the Multiple Functions and Transport pathway (MT). 
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2.2 Network reconstruction  
In this study, all of the reactions in BiGG database were used to reconstruct 

human metabolic network we study. In this network, one node is a metabolite in a 
specific subcellular compartment and there is an edge between two metabolites if 
they occur in the same reaction and one is the product and the other a substrate. For 
example, according to BiGG, glucose–6–phosphate is localized to both the 
compartments c and r giving two nodes in our network.  

2.3 Metabolite clustering by network topology 
To achieve the network clusters we use the simulated annealing algorithm to 

find the maximum modularity metric of the network[10]. A network cluster 
identified by this algorithm is a region of the network that is more strongly coupled 
within than it to other clusters. The general philosophy of this method is to maximize 
a measure of modularity of partitions of a network [11]. By allowing some disorder 
the algorithm avoids getting stuck in local minima. Although modularity 
maximization algorithms suffer from its resolution limit[12] and other measures 
aimed to conquer this limitation have been proposed [13], earlier studies have 
suggested that network clusters identified by modularity maximization algorithms 
are good candidates of biological modules [4, 10]. We compared the results with a 
more specialized algorithm [14], but the simulated annealing algorithm could find 
partitions with larger modularity than this method.  

2.4 Block-model network of categories  
Block modelling is a general way of structuring and simplifying large-scale 

organization commonly used in social science [15]. In this methodology one 
construct a network of categories of nodes that can be linked in various ways. In our 
plots of the block–model networks, the size of node is proportional to the number of 
entities that belong to the category, and the width of a link is proportional to the 
number of links between the two categories. These higher-order networks can be 
analyzed with general network methods. In this study, we constructed three types of 
block models with respect to pathways, subcellular localizations and network 
clusters. 

2.5 Matching between different categorizations  
We used overlap score to measure the similarity between different 

categorizations[16]. Consider two categorizations X and Y (for example be 
subcellular localization and pathways) and assume each metabolite is associated 
with a subset of the categories of X and Y. Let φX(x) denote the fraction of 
metabolites in category x ∈ X, and define φY(y) correspondingly. Let φXY(x,y) denote 
the joint frequency of x and y, i.e. the fraction of vertices that are categorized both 
as x ∈ X and y ∈ Y. In a random distribution of functions the expectation value of 
φXY(x,y) is φX(x)φY(y), but if the categories of different categorizations are 
overlapping, then some φXY(x,y), the ones that overlap, will be larger than φX(x)φY(y), 
while for the others φXY(x,y) will be lower than φX(x)φY(y). Thus, both overlapping 
and not overlapping categories will contribute to |φXY(x,y) – φX(x)φY(y)| and a 
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prototypical overlap score is 

 

µ = φXY (x,y) − φX (x)φY (y)
y ∈Y
∑

x ∈X
∑

 
This quantity is, however, affected by finite sizes, meaning that it can be used to 

compare different systems of the same sizes, not as an overlap measure per se. To 
get a stand-alone overlap measure, we normalized the µ-value against those of 
perfect overlaps in a system of the same sizes and define overlap score of 
categorizations X and Y as follows: 

),max( YYXX

XY
XY µµ

µ
ν =

 
The value of ν is between 0 and 1 with 1 indicating a perfect match. We 

generated 1000 pairs of random clusters of the metabolic network, in which the 
cluster sizes are the same as those of X and Y, respectively. Then we use z-score [17] 
of ν to quantify if the overlap score of two categories X and Y is larger or smaller 
than expected.  

3 Results and discussion  
3.1 Relation between the categorizations—pathways, subcellular 

localizations and network clusters  
From the reaction system, we derive a human metabolic network which consists 

of 2771 nodes and 9451 edges. The simulated-annealing algorithm was applied to 
decompose this network. 9 network clusters were identified with modularity value 
0.676. We compared the results with those of the edge-betweenness based 
algorithm [14], which generated 10 network clusters with modularity value 0.674. 
Most network clusters from the two algorithms are strongly overlapping. Our 
second class is the localization (or subcellular compartment) of the metabolites, i.e. 
where in the cell a metabolite is occurring in a substantial amount. BiGG defines in 
total eight categories of this categorization. Our third class is the annotated 
pathways of the BiGG database. BiGG uses the ten pathways from the KEGG 
database [9]. Network clusters, localization and pathways are different ways of 
categorizing the metabolites, representing different traits of the metabolites; we will 
henceforth call them just categorizations.  

From the categorizations, we constructed three block-model networks [15] with 
respect to pathway, subcellular-localization and network-cluster, in which the nodes 
correspond to the categories of the three categorizations respectively. To picture the 
overlap between the different categorizations, we plot a pie chart per node of the 
relative number of metabolites of different categories belonging to one 
categorization (c.f. the cartographic representation of Ref. [10] ).  

Figure 1 shows the linkages among network clusters. The structure of the 
block-model networks has the same type of a core-periphery organization observed 
in Ref. [3]. Clusters 1, 3, 4 and 5 are connected by many reactions, thus forming a 
core of the block-model network displayed in Fig. 1 and in the full metabolic 
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network. 
Unlike the pathways and subcellular compartments, network clusters are 

identified without any prior biological background knowledge. As seen in Fig. 1-I 
and II there is an overlap between network clusters and both pathways and 
subcellular localizations. Three of the four core clusters are mixtures of metabolites 
in cytoplasm and extracellular space, reflecting the central role of cytoplasm in 
cellular metabolism, and many opportunities of material exchange between the cell 
and its surroundings. The other clusters, including the five more peripheral 
categories and one core category, are dominant by metabolites from a single 
organelle, respectively, suggesting a high extent of overlap between the 
network-cluster and localization categorizations. This feature implies that each 
organelle respectively defines a compact region in the metabolic network. As a 
relatively independent organelle, mitochondrion may have more complex functions 
and more interactions with the cytoplasm than the others. Projecting to topology, its 
corresponding network cluster, 3, is analoguously a core cluster. From functional 
point of view, the core clusters are multi-functional categories in which multiple 
pathways are almost evenly distributed, whereas the peripheral categories exhibit to 
own a major function, for instance, glycan biosynthesis and metabolism for 2 and 9, 
and lipid metabolism for 6 and 7.  

 

 
 

Figure 1- Cartographic representations of the block-model with respect to network 
clusters. Each circle represents a network cluster and is coloured according to the 
fractions of pathway (I) and localization (II) respectively, while the edges reflect the 
connections between clusters. 

  

3.2 Quantitative difference between categories  
In this section we apply an overlap score ν together with the z-score to 

quantitatively measure the overlap of the three categories compared with randomly 
assigned categories. As defined in the Method section, the value of ν is between 0 
and 1, with 1 representing a perfect match. A larger ν indicates a higher extent of 
overlap between the two categories. To get a meaningful value of how much 
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different from expected the value is we use the z-score. The z-score measures how 
many multiples of standard deviation that the gap between the overlap score of the 
two categories and the average overlap score of the random category pairs. Since 
about 99.7% of values drawn from a normal distribution lie within three standard 
deviations away from the mean, a z-score larger than three means, with 99.7% 
certainty, a larger value of f than expected. Thus it can quantify if the overlap score 
of two categories is larger or smaller than expected.  

For localization and network clusters we obtain ν = 0.72, z =108.46; for network 
clusters and pathways we get ν = 0.37, z = 45.94; and finally pathways versus 
localization gives ν = 0.42, z = 54.69. The fairly large z-scores for all the categories 
mean that the categories are significantly correlated with each other. On the other 
hand, there are differences; so they do also measure different organizational traits. 
The subcellular localization and network clusters are overlapping most of the three 
pairs of functional categories. This effect seems to stem from the strong overlap 
between organelles and the peripheral network clusters (as seen in Fig.1-II), 
suggesting that topologically compact regions in the metabolic network correspond 
to physically and morphologically individual subcellular entities. 

3.3 Network structure of the categories of the three categorizations   
From the early observations of broad and skewed degree distributions [18], we 

first examine the average degree in the network for each category of the three 
categorizations, i.e. the average interactions within the categories, see Figure 2-I–III. 
For categorization according to different pathways, the hub metabolites are gathered 
in the categories “Multiple Functions and Transport” (MT) and “Multiple 
Functions” (M), especially in MT. These categories constitute only 6% and 4% of 
the metabolites respectively but are essential for keeping the network 
connected [18]. In contrast, the metabolites appearing in T (the pure transport 
category) have the lowest extent of metabolic interactions with others. One 
explanation of this is that MT does not include metabolites localized in extracellular 
space, whereas most metabolites of T are localized in extracellular space (66%) and 
cytoplasm (25%). The MT metabolites seem more involved in moving metabolites 
across intracellular membrane boundaries than the T metabolites that is more 
specialized in transport across cell walls. The corresponding study for the different 
subcellular compartments (seen in Fig. 2-II) indicates that metabolites in cytoplasm 
and mitochondrion have more interactions with others, and those in extracellular 
space have the lowest average degree. In Fig. 2-III we see that for the 
network-cluster categorization the high-degree nodes are primarily located in the 
core clusters, meaning that the cores themselves are more highly connected than the 
peripheries. 

The node degree measures the local importance of a node. To get a more global 
view about the position of metabolites in the network, we also measure the 
betweenness centrality. The betweenness of a node is proportional to the number of 
shortest paths between pairs of nodes. Assuming metabolic processes preferably 
occur via short paths, betweenness should be a better indicator than degree for 
global centrality and importance. In particular, the betweenness is high for nodes 
connecting different network clusters. Figure 2-IV through VI shows the average 
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betweenness for the different categorizations—pathways, subcellular compartments 
and network clusters, respectively. Metabolites in the MT pathway, localizations c 
and g, and network cluster 4 have high betweenness. One example showing that the 
global information of betweenness is more informative than the degree is that the 
Golgi apparatus is the organelle with highest betweenness, which is consistent with 
its central function of packaging macro molecules for secretion. For the network 
clusters, as can be guessed from Fig. 1, cluster 4 is the one with highest average 
betweenness of the metabolites. The significant higher betweenness of MT 
metabolites than those of both M and T ones suggests the obviously different roles 
these three clusters of metabolites play in the metabolic flux — metabolites 
involved in multiple pathways including transport (MT) are the most important 
media for material and information flow in the metabolic system.  

 
Figure 2- Network structures of the categories. 

 
In Fig. 2-VII–IX, we investigate the number of connected components of the 

subnetworks of nodes of the same category. For the pathway categorization 
(Fig. 4-VII), we note that subnetwork defined by the transportation pathway is 
broken into over 10 isolated clusters (note that this pathway is also the sparsest, see 
Fig 4-I, sparse networks are naturally more prone to be disconnected). This 
highlights a difference between pathways and network clusters—pathways need not 
be independent units (an often quoted definition of “module”) by construction. The 
energy metabolism pathway is connected (and also the second most densely linked 
pathway). Many metabolites of this pathway are small molecules normally labelled 
as carriers for transferring electrons or certain functional groups, such as ATP, 
NADH and H2O. Such “currency metabolites” have often many more links than 
regular metabolites, explaining the density and connectedness of this pathway. 
Figure 2-VIII shows that the extracellular space compartment has a very fragmented 
network, even more than the transport pathway. The other non-organelle 
compartment, cytoplasm, is also disconnected. The organelle compartments, on the 
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other hand, are connected. In sum, metabolites localized to the extracellular space 
and cytoplasm act as links between the more independent metabolic subnetworks of 
the organelles. Since our network clustering algorithm is designed to find densely 
connected regions it is no wonder that the network clusters are all connected 
(Fig. 2-IX). 

4 Conclusions  
To understand a large system such as the metabolism one need to simplify and 

categorize its components. In this paper we have investigated three ways of doing 
this—grouping metabolites according to pathways, localization, and network 
clusters respectively. From topological point of view, all the three categories are 
globally organized in a modular core-periphery pattern. Specifically, the 
compartmentalization is clearly organized into a core of extracellular media and 
cytoplasm, and a periphery of organelles; while the core and periphery modules of 
the pathway interactions correspond to housekeeping and advanced specific 
functions respectively. There are peripheral network clusters overlapping almost 
completely with the organelle categories or being dominated by one major category 
of pathways. Qualitative and quantitative analysis shows that the three categories 
are significantly correlated with each other, suggesting the interrelationship between 
biochemical specific functions, spatial isolations in cells, and topological compact 
regions in metabolic networks. Our results suggest that the spatial organizations and 
functional coherence of cellular metabolic systems have been imprinted in the 
topology of metabolic network. Therefore, though the traditional classification of 
metabolites into pathways or organelles has provided abundant information to 
biologists, our study about their correlation according to topology could shed light 
on the underlying structures supporting the metabolic function of cells, and thus 
could provide a basis for further metabolic modelling. 

Acknowledges 
JZ is supported by grant from National Natural Science Foundation of China 

(10971227). PH acknowledges support from the Swedish Foundation for Strategic 
Research, the Swedish Research Council and the WCU program through NRF 
Korea funded by MEST R31–2008–000–10029–0. 
 
References 
[1] Zhao J, Yu H, Luo J et al. Complex networks theory for analyzing metabolic networks. 

Chinese Science Bulletin, 2006, 51:1529-1537. 
[2] Lacroix V, Cottret L, Thébault P et al. An introduction to metabolic networks and their 

structural analysis. IEEE / ACM Transactions on Computational Biology and 
Bioinformatics 2008, 5:594-617. 

[3] Zhao J, Ding G-H, Tao L et al. Modular co-evolution of metabolic networks. BMC 
Bioinformatics, 2007, 8:311. 

[4] Vitkup D, Kharchenko P, Wagner A. Influence of metabolic network structure and 
function on enzyme evolution. Genome Biology, 2006, 7:R39. 

[5] Zhao J, Yu H, Luo J-H et al. Hierarchical modularity of nested bow-ties in metabolic 

20 The 4th International Conference on Computational Systems Biology



 

 

networks. BMC Bioinformatics, 2006, 7:386. 
[6] Mintz-Oron S, Aharoni A, Ruppin E et al. Network-based prediction of metabolic 

enzymes' subcellular localization. Bioinformatics, 2009, 25:i247-1252. 
[7] Duarte Nc, Herrgard Mj, Palsson Bo. Reconstruction and Validation of Saccharomyces 

cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model. 
Genome Res, 2004, 14:1298-1309. 

[8] Duarte Nc, Becker Sa, Jamshidi N et al. Global reconstruction of the human metabolic 
network based on genomic and bibliomic data. Proc Natl Acad Sci USA, 2007, 
104:1777-1782. 

[9] Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic 
Acids Res, 2000, 28:27-30. 

[10] Guimera R, Amaral Lan. Functional cartography of complex metabolic networks. 
Nature, 2005, 433:895-900. 

[11] Newman M, Girvan M. Finding and evaluating community structure in networks. Phys 
Rev E, 2004, 69:026113. 

[12] Fortunato S, Barthelemy M. Resolution limit in community detection. Proc Natl Acad 
Sci USA, 2007, 104:36-41. 

[13] Li Z, Zhang S, Wang R-S et al. Quantitative function for community detection. Phys 
Rev E, 2008, 77:e036109. 

[14] Newman M, Girvan M. Finding and evaluating community structure in networks. Phys 
Rev E, 2004, 69:026113. 

[15] Wasserman S, Faust K: Social Network Analysis: Methods and Applications. 
Cambridge: Cambridge University Press; 1994. 

[16] Holme P. Model validation of simple-graph representations of metabolism. J R Soc 
Interface, 2009, 6:1027-1034. 

[17] Maslov S, Sneppen K, Zaliznyak A. Detection of topological patterns in complex 
networks: correlation profile of the internet. Physica A: Statistical and Theoretical 
Physics, 2004, 333:529-540. 

[18] Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks. 
Nature, 2000, 407:651-654. 

 

Three Faces of Metabolites: Pathways, Localizations and Network Positions 21


