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Abstract This paper proposes a production-inventory model with setup cost for production and
financial compensation for stopping production when the buy-back program is activated, which is
a modified model to that of [Chen et al 2007] by including the setup cost. Under an energy buy-
back program, we consider M+1 types of market scenarios and the corresponding buy-back levels
with different financial compensations determined by the specific supply-demand condition. We
show that the optimal production-inventory policy is of an (s,S) type for all market scenarios. The
inclusion of setup cost in the proposed model may better depict the real-world scenario and help the
manufacturers make more reasonable decisions.

Keywords dynamic programming; production-inventory model; (s,S) policy; energy buy-back
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1 Introduction
Soaring power transactions between utilities caused by regulatory and operational

changes in major developed countries led to a huge popularity of energy buy-back pro-
grams in the last decade; see [Coy 1999, Wald 2000], etc. In [Chen et al 2007], the au-
thors studied the production-inventory problem in which the manufacturer participates
in the aforementioned energy buy-back program, which gives participating manufac-
turers financial compensations for reducing their energy use when it is activated. They
have shown that a base-stock policy is optimal for normal (non-peak) market condition
whereas the (s,S) policy is optimal for peak market conditions. However, one of the
simplification of their model is the exclusion of setup cost that is fairly common in the
real-world practice in production. Other relevant work can be found in [Beyer et al 2006,
Chao and Chen 2005, Sethi and Cheng 1997, Song and Zipkin 1993], and so on.

In this paper, a modified model is proposed by including the setup cost as well as
financial compensations for participating the buy-back program. Taking into the consid-
eration of setup cost for production better depicts the real-world scenario since certain
amount of setup costs incur for almost all the manufacturers whenever production hap-
pens. Under the buy-back program, we consider M+1 types of market scenarios and the
corresponding buy-back levels with different financial compensations determined by the
specific supply-demand condition.
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With the modified model proposed in this paper, we show that the optimal production-
inventory policy is of an (s,S) type for all market scenarios (both non-peak and peak
states). For any period k with M + 1 different states, if the inventory level is at or above
s, the manufacturer should participate the buy-back program and stop production; if the
inventory level is below s, the manufacturer should reject the offer and produce up to S.
Within certain period k, those s for different states i, denoted by s(i)k , are supposed to be
with different values. We will show that under some assumptions, the relationship among
the reproduction levels for different states satisfies

s(0)k ≥ s(1)k ≥ s(2)k ≥ . . .≥ s(M)
k

whereas the order-up-to level, denoted by Sk, remains the same for all market scenarios.
The following section formulates the general model. The third section characterizes

the optimal production-inventory policy through induction, and the final section concludes
this paper.

2 Model
We consider M + 1 market scenarios including one non-peak state and M types of

peak states. We define L0 = 0 for the non-peak state i = 0. The meaning seems obvious.
Within a non-peak state, the manufacture will not receive any reward even if he decides
to stop production. We also define a financial compensation, denoted by Li, with Li > 0
for i = 1, . . . ,M, corresponding to the buy-back level for each peak state i. Apart from the
financial compensation, we introduce a constant setup cost K > 0 for production, i.e., the
cost will be increased by K whenever the manufacturer decides to begin production at the
beginning of each period. Then we consider a multi-period production-inventory model
in which ξk, k = 1, . . . ,N, are independent and identically distributed with mean value µ ,
the cumulative distribution function Φ(·) and density function φ(·) for the single period
demand. A linear production cost with unit production cost c and a convex and coercive
holding/shortage cost function G(y), that is, as |y| →+∞, G(y)→+∞, are also assumed.
Moreover, there is no production-capacity constraint. Let pi denote the corresponding
discrete probability distribution regarding Li with ∑M

i=0 pi = 1, xk denote the inventory
level at the beginning of period k, and yk denote the order-up-to level. It should be noted
that y is a decision variable and yk ≥ xk for k = 1, . . . ,N.

The objective is to minimize the total cost, TC(x), over the planning horizon of N
periods, which can be expressed as

TC(x1) = E{
N

∑
k=1

[c(yk− xk)+G(yk)+δ (yk− xk)(Li +K)−Li]− cxN+1} (1)

where δ (x) is defined as

δ (x) =
{

1, if x > 0
0, if x = 0

For simplification, we assume that at the end of planning horizon N, the unmet demand
(or leftover stock) can be produced (or salvaged) at c. This assumption is innocuous since
it can be easily relaxed.
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By inventory dynamics,

xk+1 = yk−ξk, k = 1, . . . ,N (2)

and with the assumption about the independent and identically distributed demands, (1)
can be readily simplified to

TC(x1) = E{
N

∑
k=1

[G(yk)+δ (yk− xk)(Li +K)−Li]}− cx1 + cNµ (3)

For all x, define fN+1(x, i)≡ 0. Then the dynamic programming equation is

fk(xk, i) = min
y≥xk
{G(y)+δ (y− xk)(Li +K)−Li +

M

∑
j=0

p j

∫ ∞

0
fk+1(y− x, j)dΦ(x)} (4)

for k = 1, . . . ,N.
Without loss of generality, we may assume that

L1 ≤ L2 ≤ . . .≤ LM (5)

Consequently, the minimum of the total cost can be expressed as

TC(x1) = E[ f1(x1, i)]− cx1 + cNµ (6)

3 Optimal Production-inventory Policy
In this section, we characterize the optimal production-inventory policy by using dy-

namic programming. The analysis consists of two parts: first, we deal with a single period
problem and identify the optimal policy for for period N, i.e., the last period in the plan-
ning horizon; second, given the optimal policy for the last period, we characterize the
optimal policy for the N-period problem through induction.

3.1 Single Period Analysis
For period N in the planning horizon, since G(y) is convex and coercive, there exist a

global minimizer of G(y), denoted by SN , and a solver of G(y) = G(SN)+K+Li, denoted
by s(i)N . In addition, from the convexity of G(y) and Li ≤ Li+1 with i = 1, . . . ,M−1, it can
be readily verified that s(i)N ≥ s(i+1)

N .

Therefore, the optimal policy is defined by a pair of critical numbers (s(i)N ,SN). In
other words, for i = 0,1, . . . ,M

fN(xN , i) =

{
G(xN)−Li, xN ≥ s(i)N

G(SN)+K, xN < s(i)N

(7)

In particular, for the non-peak state, since L0 = 0, we have

fN(xN ,0) =

{
G(xN), xN ≥ s(0)N

G(SN)+K, xN < s(0)N

(8)

The optimal policy for non-peak period in our model is still of an (s,S) type, which is
different from the base-stock policy conducted in the [Chen et al 2007]’s model without
considering setup cost.
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3.2 Multi-Period Analysis
This part extends the result of period N to the multi-period problem by induction from

dynamic programming. In order to achieve the objective, two lemmas concerning the
properties of K-convex function are necessary.

Lemma 1. (i). If f (x) is K-convex, then it is M-convex for any M ≥ K. In particular, if
f (x) is convex, then it is also K-convex for any K ≥ 0; (ii). If f and g are K-convex and
M-convex, respectively, then α f +βg is (αK +βM)-convex when α and β are positive;
(iii). If f (x) is K-convex and a is a random variable such that E| f (x− a)| < +∞ for
all x, then E[ f (x− a)] is also K-convex; (iv). If f (x) is K-convex, then f (x)+A is also
K-convex for any constant A ∈ R.

Lemma 2. If f (x) is K-convex and continuous with f (x)< ∞ for any finite-valued x and
lim|x|→∞ f (x) = ∞, there exist a value S and a function g(x) such that for any a ∈ R

g(x) =
{

f (S), a≤ S
infx≥a{ f (x)}, a > S (9)

Furthermore, g(x) is also K-convex and continuous in x.

In Lemma 1, proofs of (i) to (iii) are given in [Bensoussan et al 1983, Bertsekas 1978],
and the proof of (iv) is obvious. Lemma 2 is given in [Chen et al 2007].

Theorem 3. For any period k, k = 1, . . . ,N, there exist pairs of critical numbers s(i)k and

Sk with s(i+1)
k ≤ s(i)k ≤ Sk, i = 1, . . . ,M− 1, such that the optimal production-inventory

policy is of an (s(i)k ,Sk) type as follows: If xk ≥ s(i)k , take the offer and stop production,

and if xk < s(i)k , reject the offer and produce (Sk− xk) to the level Sk.

Proof. We shall show inductively that each of the functions f1(x1, i), f2(x2, i), . . . , fN(xN , i)
is (K +Li)-convex. From the single period analysis in the previous subsection, the result
holds for period N. Since SN is a global minimizer of G(y), and s(i)N is the solver to the
following equation

G(y) = G(SN)+K +Li, y≤ SN , i = 0,1, . . . ,M (10)

it follows that fN(xN , i) is (K +Li)-convex in x.
Now, we consider the situation of period N−1. From (4) and the fN(x, i), let

FN−1(x) =
M

∑
i=0

pi fN(xN , i) (11)

We have that for i = 0,1, . . . ,M

fN−1(xN−1, i) = min
y≥xN−1

{G(y)+δ (y− xN−1)(Li +K)−Li +E[FN−1(y−ξN−1)]} (12)

From the results of previous subsection, we know that fN(xN , i) is (K+Li)-convex. Then,
by Lemma 1,

G(y)+E[FN−1(y−ξN−1)] (13)
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is (K +Li)-convex. Thus, by Lemma 2, there exist pairs of numbers s(i)N−1 and SN−1 with

s(i)N−1 ≤ SN−1 such that

inf
y∈(−∞,+∞)

{G(y)+E[FN−1(y−ξN−1)]}= G(SN−1)+E[FN−1(SN−1−ξN−1)] (14)

where SN−1 is a global minimizer of (13), which performs the same function as S in
Lemma 2.

In addition, s(i)N−1 is the solver to the following equation

G(y)+E[FN−1(y−ξN−1)]}= K+Li +G(SN−1)+E[FN−1(SN−1−ξN−1)], y≤ SN (15)

Furthermore,
G(y)+E[FN−1(y−ξN−1)] (16)

is non-increasing on (−∞,s(i)N−1]; see [Gallego and Sethi 2005]. Consequently, we have

G(x)+E[FN−1(x−ξN−1)] ≤ G(y)+E[FN−1(y−ξN−1)]
≤ K +Li +G(y)+E[FN−1(y−ξN−1)]

(17)

for any x and y with si
N−1 ≤ x≤ y. Therefore,

miny≥xN−1{G(y)+δ (y− xN−1)(Li +K)−Li +E[FN−1(y−ξN−1)]}

=

{
G(xN−1)+E[FN−1(xN−1−ξN−1)]−Li, xN−1 ≥ s(i)N−1

G(SN−1)+E[FN−1(SN−1−ξN−1)]+K, xN−1 < s(i)N−1

(18)

The result holds for period N−1.
Now, we define

fN−1(xN−1, i) =

{
G(xN−1)+E[FN−1(xN−1−ξN−1)]−Li, xN−1 ≥ s(i)N−1

G(SN−1)+E[FN−1(SN−1−ξN−1)]+K, xN−1 < s(i)N−1

(19)

By the same line of reasoning for period N together with Lemma 1, we conclude that
fN−1(xN−1, i) is (K +Li)-convex. Moreover, in the proof of period N− 1, we only use
the (K + Li)-convexity property of fN(xN , i), thus the same induction procedure can be
extended to any period k, k = 1, . . . ,N−2, with the (K +Li)-convexity of fk(xk, i) as the
sufficient condition for optimal policies.

The proof is completed.

The optimal policies characterized in Theorem 3 can be readily illustrated in Figure
1. Within certain period k, (s(0)k ,Sk) represents the optimal policy for the non-peak state

in the left sub-figure, and (s(i)k ,Sk) represents the optimal policy for the i-type peak state
in the right sub-figure.
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Figure 1: Optimal Policies for Non-Peak and Peak States

4 Conclusion
Based on the model discussed in [Chen et al 2007], this paper proposes a modified

model by taking into the consideration of both setup cost and financial compensation to
manufacturers for not using energy when the buy-back program is activated during peak
states. If the manufacturer stops production and reduces the use of energy, he will be
rewarded with a financial compensation associated with different peak state; whereas if
he rejects the offer, that is, he decides to continue production without reducing the use of
energy, a certain amount of setup cost will incur and no compensation is rewarded.

Through induction, this paper has identified the optimal production-inventory policy
as an (s,S) type for all market scenarios. Nevertheless, Sk remains the same whereas s(i)k
varies for different market scenarios. The modified model has shown that within each
period k, the relationship among the reproduction levels for different states should satisfy

s(0)k ≥ s(1)k ≥ s(2)k ≥ . . .≥ s(M)
k

For each period k, if the inventory level is below s(i)k for state i, the manufacturer will
choose to produce so that the inventory level rises up to Sk; otherwise, he will accept the
offer and stop production.
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