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Abstract In this paper, we consider the problem of emergency response resource storage locations
and capacities. Resources are important for disaster relief operations in coping with natural and
manmade emergencies. In order to enhance the ability of response to disasters, different levels of
reserve system need to be set up for holding relief resources. These emergency storages may have
different capacities and construction costs. In this paper, we formulate a model to determine the
storage locations and their capacities at minimum total construction cost. Then, an approximation
algorithm is presented by introducing LP-rounding technique. Finally, the proofs of correctness and
approximation ratio are shown.
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1 Introduction
A disaster is defined by the World Health Organization as any occurrence that causes

damage, destruction, ecological disruption, loss of human life, human suffering, deteri-
oration of health and health services on a scale sufficient to warrant an extraordinary re-
sponse from outside the affected community or area. Earthquakes, hurricanes, tornadoes,
volcanic eruptions, fire, floods, blizzard, drought, terrorism, chemical spills, nuclear ac-
cidents are included among the causes of disasters, and all have significant devastating
effects in terms of human injuries and property damage.

In order to enhance the capacity of response to disasters, the Chinese central govern-
ment is planning a national reserve system of disaster relief commodities such as tents,
food, drinking water, medicines and equipment, etc. Therefore, the government admin-
istration needs to determine where these inventories locate and and what is the capacity
of each storage. Generally, there can be several levels of capacities for a storage to be
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determined. It is also assumed that there exist a set of potential locations to set up a in-
ventory. These places should always be easy to access by current transport infrastructure,
in order to transport resources while emergency events happen. Obviously, different size
of storage for emergency resources needs different construction cost. On the other hand,
the storage capacity must meet the demand so as to provide sufficient disaster relief op-
eration resources in response to emergency situations. This process can be divided into
two stages. Firstly, according to the potential emergency disasters, affected areas can be
pointed out for a special disaster. Secondly, the requirement at a potential affected area
can be estimated by the population in this area.

Beginning with Cooper [3] in 1963, facility location-allocation (FLA) provides a valu-
able method in deciding where to place facilities coupled with determining how to assign
demand to the located facilities in order to utilize resources effectively. Logendran and
Terrell [7] firstly introduced the stochastic uncapacitated FLA model in which customers’
demands was assumed to be random variables. Next, by introducing fuzzy theory into
FLA problem, the capacitated FLA problem with fuzzy demands of customers as the ex-
pected cost minimization model, K-cost minimization model and possibility maximiza-
tion model were formulated (Zhou and Liu [14]). Wen and Iwamura [12] considered the
FLA problem under random fuzzy environment using (K,L)-cost minimization model
under the Hurwicz criterion.

Nozick and Turnquist [8] present a model to choose distribute center (DC) locations
and allocations in a multi-product system. Their model can be used, for example, to
decide which products to stock at a central plant, which to stock at regional DCs, and
which not to stock at all (i.e., produce in a make-to-order fashion). They propose an
iterative approach that alternately solves a uncapacitated fixed-charge location problem
and a stocking problem (for a fixed set of DC locations). Stocking decision is an important
issue in the inventory system. Kukreja et al.[6] develop stocking policies for low usage
items in a multi-location inventory system with all locations using a continuous review,
one-for-one ordering policy.

Beamon and Kotleba [2] developed an inventory model for a pre-positioned ware-
house responding to a complex humanitarian emergency. Complex humanitarian emer-
gencies are unique due to their unpredictable demand patterns and long durations. Their
model investigated a single ąřitemąś (which may be interpreted as a single type of relief
kit or a single set of items), developed order quantities that were independent of vehicle
or container sizes, and assumed a continuous demand approximation.

Emergency logistics has also emerged as a worldwide-noticeable theme. Sheu [10]
presented four main challenges that emergency logistics management can be character-
ized. Also as a sponsor, Sheu edited a special issue of Transportation Research Part E, in
which six papers on emergency logistics were included. These papers concentrated on ad-
dressing the issue of relief distribution to affected areas. In some of the studies, the issue
of evacuating affected people was also considered. When dealing with uncertainty, Potvin
et al.[9] list a number of reactive dynamic strategies for vehicle routing and scheduling
problems.

One of the earliest studies conducted on location of emergency service facilities is
by Toregas et al.[11] modeling the problem as a set covering problem and using a lin-
ear programming as the solution method. Consignment of goods is typically examined
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in the literature as a multi-commodity network flow problem, with a multi-period and/or
multi-modal setting. Haghani and Oh [5] formulated a multi-commodity, multi-modal
network flow model with time windows for disaster response. Two heuristic algorithms
are proposed. The flow of goods over an urban transportation network is modeled as
a multi-commodity, multi-modal network flow problem by Barbarosoglu et al. [1]. A
two-stage stochastic programming framework is formed as the solution approach. An-
other study on the topic, conducted by Fiedrich et al.[4], model the problem similar to
a machine scheduling problem proposing two heuristics, Simulated Annealing and Tabu
Search. Yi and Ozdamar [13] consider a dynamic and fuzzy logistics coordination model
for conducting disaster response activities. The model is illustrated on an earthquake
data set from Istanbul. Also, Barbarosoglu et al. [1] proposed that their model could be
used effectively within a decision-aid tool by public and non-public response agencies
that are obscured by the variability of impact estimations under large number of different
earthquake scenarios.

Mathematical modeling of storage location and inventory management in emergency
relief efforts has received little attention in the literature. In order to ensure continuous
capacity in long-term responses, government organizers often institute arrangements for
the storage of relief items in warehouses located near the response location. This research
focuses on developing an warehouses location and inventory level determination man-
agement policy to improve the effectiveness and efficiency of emergency relief during
long-term humanitarian responses. In this paper, we consider a special kind of resource,
such as tent, vaccine, etc.

The remainder of this paper is organized as follows. In Section 2, we formulate a
storage location and capacity determination problem and specify that this model is NP-
hard. In Section 3, an approximation algorithm for solving this problem is presented and
the approximation ratio is analyzed. Finally, we conclude the paper with a summary and
directions for future research.

2 Model Description for Location and capacity Determi-
nation Problem

In this paper, we consider a resource reserve system with single type of commodity,
such as tents. Now, several warehouses for holding the commodity need be built in order
to deal with disasters in the special area. Decision maker needs to determine location and
size of these inventories.

Let P represent the set of potential locations. Suppose there are L levels of the storage
sizes. And Cl and cl are the capacity and setting up cost of storage at level l respectively.

Parameters
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J : Set of affected districts
Cl : capacity of storage at level l
cl : cost of setting up a storage at level l
d j : the potential demand for some commodity in affected district i.
T : the expected deadline for the commodity, which means the commodity

should arrive in T after a disaster
ti j : travel time from i to j

ai j =

{
1, if ti j ≤ T,
0, if ti j > T,

Our optimization model will determine the minimum total cost at which a set of stor-
ages can be constructed, such that the demand of each affected district can be satisfied.
Up to these parameters, the following decision variables need to be determined.

Decision variables

xl
i =

{
1, set up a storage in level l at location i,
0, ortherwise,

Then, The model for storage location and level determination problem (SLLD) can be
stated as follows:

min z = ∑
i∈P

l=L
∑

l=0
clxl

i (1)

subject to

l=L

∑
l=0

xl
i = 1, ∀i ∈ P (2)

∑
i∈P

l=L

∑
l=0

ai jClxl
i ≥ d j, ∀ j ∈ J (3)

xl
i ∈ {0,1} ∀i ∈ P, l = 1,2, . . . ,L (4)

The objective function (1) serves to minimize the total cost of constructing all stor-
ages. Constraints (2) specify only one type level can be chosen at each potential location.
Constraints (3) guarantee that the required amount of demand is satisfied. Finally, (4)
states that xl

i-variables are binary.
This problem SLLD is NP-hard, which can be proved by showing set cover problem

is a special case of this problem.
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3 Approximation Algorithm Design and Analysis
In this section, we will present an approximation algorithm by introducing LP-rounding

technique for SLLD. Then, the theoretical performance of this algorithm is analyzed.
Firstly, by relaxing integer constraints of SLLD, we obtain the LP-relaxation of SLLD

as follows:

min z = ∑
i∈P

l=L
∑

l=0
clxl

i (5)

subject to

l=L

∑
l=0

xl
i = 1, ∀i ∈ P (6)

∑
i∈P

l=L

∑
l=0

ai jClxl
i ≥ d j, ∀ j ∈ J (7)

0≤ xl
i ≤ 1, ∀i ∈ P, l = 1,2, . . . ,L (8)

(9)

The LP-relaxation of SLLD can be solved efficiently since it is a linear programming.
Now, we propose an LP-rounding algorithm for the SLLD. This algorithm contains three
stage: solving the LP-relaxation of SLLD, solution rounding and solution adjustment.

The following process contains steps of our LP-rounding Algorithm (LPrA).

Algorithm LPrA LP-ROUNDING ALGORITHM FOR SLLD

1. solve the LP-relaxation of SLLD, and get fractional optimal solution xl∗
i .

2. for each i ∈ P

3. s∗i =
l=L
∑

l=0
Clxl∗

i

4. l∗i = min{l|Cl ≥ s∗i , l = 0,1,2, . . . ,L}
5. xl

i =

{
1, l = l∗i ,
0, ortherwise,

6. endfor
7. Introducing temporary variable yl

i = xl
i

8. for each i ∈ P
9. if xl

i = 1 and l 6= 0

10. Let yl
i = 0 and yl−1

i = 1, if for any j ∈ J, ∑
i∈P

l=L
∑

l=0
ai jClyl

i ≥ d j still hold, then

set xl
i = 0 and xl−1

i = 1.
11. endif
12. endfor
13. Output the integer solution xl

i .

In LPrA, LP-relaxation of SLLD is solved in step 1 and obtain the fractional optimal
solution xl∗

i . The rounding process is from step 2 to step 6, after which we get the integer
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solution. In order to improve the performance of our algorithm, the adjustment process
from step 8 to 11 is designed.

Before the proof of correctness and performance for LPrA, let z∗(SLLD) and z∗(LP−
SLLD) be the optimal value for SLLD and LP-relaxation of SLLD. Obviously, we have

z∗(SLLD)≥ z∗(LP−SLLD).

Now, let’s define:

c0 = |P|c1 (10)

r = max{cl+1

cl |l = 1,2, . . . ,L−1} (11)

Since linear programming can be solved in polynomial time, the LPrA is obvious
a polynomial time algorithm. For the performance of LPrA the we have the following
theorem.

Theorem 1. Given any SLLD instance, LPrA produces a feasible solution.

Proof: Assume xl
i is the output from LPrA. Firstly, it is obvious that xl

i equals 1 or 0.
Next, we will prove xl

i meet the constraints (2-3).

1. For any i ∈ P, there exist exactly one l∗, that xl∗
i = 1. Then

l=L
∑

l=0
xl

i = 1.

2. According to the adjustment process from step 8 to 11 in LPrA, the feasibility of
xl

i will not change before and after this process. Then we only need to prove the
solution after the rounding process from step 2 to step 6 is feasible. For any j ∈ J,
let

P( j) = {i|ai j = 1, i ∈ P}.
l∗i = {l|xl

i = 1}
Then,

∑
i∈P( j)

Cl∗i ≥ ∑
i∈P( j)

s∗i = ∑
i∈P( j)

l=L

∑
l=0

Clxl∗
i = ∑

i∈P

l=L

∑
l=0

ai jClxl∗
i ≥ d j. �

Theorem 2. Given any SLLD instance, LPrA produces an approximation of the optimal
solution which satisfies:

zLPrA(SLLD)≤ r ∗ z∗(SLLD)+ c0.

Where zLPrA(SLLD) is the value output from LPrA, and r,c0 is defined by (10) and (11).

Proof: Assume xl
i is the output solution from LPrA after step 6. Then we have

zLPrA(SLLD)≤∑
i∈P

l=L

∑
l=0

clxl
i .
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Let’s define:

P2 = {i|s∗i >C1, i ∈ P} (12)
P1 = {i|0 < s∗i ≤C1, i ∈ P} (13)

P0 = {i|s∗i = 0, i ∈ P} (14)

Where s∗i =
l=L
∑

l=0
Clxl∗

i . Then,

zLPrA(SLLD)≤∑
i∈P

l=L

∑
l=0

clxl
i = ∑

i∈P1

c1x1
i + ∑

i∈P2

l=L

∑
l=2

clxl
i ≤ |P1|c1 + ∑

i∈P2

cl∗i xl∗i
i

≤ |P|c1 + ∑
i∈P2

cl∗i

cl(i∗−1)

l=L

∑
l=0

clxl∗
i ≤ c0 + r ∗ ∑

i∈P2

l=L

∑
l=0

clxl∗
i ≤ r ∗ z∗(SLLD)+ c0. �

4 Conclusion
In this paper, we have studied the storage location and capacity determination problem

in emergency resource reserve system, in which a reserve system is set up for holding
disaster relief resources, and different level of storage capacity has different construction
cost. We first formulate a storage location and capacity determination model to minimize
the construction cost. Then, an approximation algorithm is presented by introducing LP-
rounding technique. Finally, the proofs of correctness and approximation ratio are given.

For future research, we need to do simulations to demonstrate average performance
of the presented algorithm. And it is desirable to develop new techniques to solve the
presented model. Finally, uncertainty of the requirement in SLLD also deserve research
efforts.
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