
Shift-and-Merge Technique for the DP Solution
of the Backpacker Problem

Byungjun You Takeo Yamada

Department of Computer Science, The National Defense Academy
Yokosuka, Kanagawa 239-8686, Japan

Abstract We formulate the ‘backpacker problem’ as an extension of the binary knapsack problem,
and present two dynamic programming (DP) algorithms to solve this problem to optimality. Firstly,
we propose a DP algorithm that solves the problem in pseudo polynomial time. Based on the
observation that the optimal objective function is a step function of the knapsack capacity, we
present an improved, ‘shift-and-merge’ DP algorithm. Although this technique does not change the
worst case complexity, in practical computation the computing time is significantly reduced.

We implement the DP and shift-and-merge DP algorithms in ANSI-C language, and evaluate
the performance of these algorithms for various type and size of instances, including comparison
against MIP solvers.

Keywords Combinatorial optimization, Dynamic programming, Knapsack problem, Directed acyclic
graph.

1 Introduction
We are concerned with a variation of the standard binary knapsack problem (KP, [9,

10]), where a ‘backpacker’ travels from a origin to a destination on a directed acyclic
graph (DAG, [13]), and collects items en route within the capacity of his knapsack. To
formulate this problem, let G = (V,E) be a DAG with node set V = {v1,v2, · · · ,vn} and arc
set E = {e1,e2, · · · ,em} ⊆ V ×V . Node v1 is the origin, and vn is the destination, and we
assume that there exists at least one path from v1 to vn. Each node v j ∈ V is associated
with an item of weight w j and profit p j, and we sometimes call this item j. The capacity
of the backpacker’s knapsack is B.

We prepare some graph notations [1]. For e = (v,v′) ∈ E, we write ∂−e = v and ∂+e = v′,
and for v ∈ V define the sets of incoming and outgoing arcs as E−(v) = {e ∈ E | ∂+e = v}
and E+(v) = {e ∈ E | ∂−e = v}, respectively. Let us introduce decision variables as follows:
x j = 1 if the backpacker accepts item j, and x j = 0 otherwise. Similarly, ye = 1, if he takes
a path that includes arc e, and ye = 0 otherwise.

Then, the backpacker problem (BP) is formulated mathematically as follows.
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BP:

Maximize
∑

j∈V
p jx j (1)

subject to
∑

j∈V
w jx j ≤ B, (2)

∑

e∈E+(v j)

ye−
∑

e∈E−(v j)

ye =



1, if j = 1
−1, if j = n,

0, otherwise
(3)

x j ≤
∑

e∈E−(v j)

ye, ∀ j ∈ V \ {1}, (4)

x j,ye ∈ {0,1}, ∀ j ∈ V,∀e ∈ E. (5)

Here, (1) and (2) are as in ordinary KP, and (3) and (5) determines a 0-1 vector that
corresponds to a path from v1 to vn. Inequality (4) means that only items on the path can
be accepted.

Without much loss of generality, we assume that problem data w j, p j ( j = 1,2, · · · ,n)
and B are all positive integers, and w j ≤ B (∀ j ∈ V) and

∑
j∈V w j > B, since otherwise the

problem is trivial. BP is NP-hard, since it includes KP which is already NP-hard [7].

Remark 1 Node vi ∈ V is maximal if E−(vi) = ∅, and minimal if E+(vi) = ∅. We assume
that v1 is the only one maximal node, and vn is the only one minimal node. That is, for
all intermediate nodes we have E±(vi) , ∅ (i = 2, · · · ,n−1), since otherwise no path exists
from v1 to vn via vi. �

Remark 2 It is possible to consider BP on a directed graph in general, where the graph
may have some directed cycles. However, we can reduce such a problem to BP on a
DAG by transforming the graph as follows. If G is not a DAG, its nodes can be classified
into a set of strongly connected components [1]. Then, if C = {v1,v2, · · · ,vp} is such a
component, we modify G into a DAG G′ as follows. Instead of arcs connecting nodes in
C, we prepare a series of arcs connecting v1→ v2→ ·· · → vp. Next, we make all the arcs
entering into (exiting from) C now enter into (exit from) node v1 (vp), respectively. Thus
we obtain BP on a DAG. �

Knapsack problem on a directed graph has been studied as a precedence-constrained
knapsack problem [12, 15], or a tree knapsack problem [3, 8]. However, in the backpacker
problem we need to determine the set of items to be accepted, as well as path from v1 to
vn. To our knowledge, no previous literature treated these two aspects simultaneously.

Since BP is a linear 0-1 programming problem, small instances may be solved using
mixed integer programming (MIP, [14]) solvers such as CPLEX [5] or XPRESS-MP.
For larger instances, however, it is often difficult to obtain exact solutions by such an
approach. In this article, we present two dynamic programming (DP, [2]) algorithms for
such an instance. In Section 2, we present a DP algorithm to solve BP on a DAG. This is
improved in Section 3 to a DP algorithm with lists [6, 11], enabling us to solve instances
with up to 320000 items within a few seconds in ordinary computing environment.
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2 A dynamic programming algorithm
We consider BP on a DAG G = (V,E). Without loss of generality, the nodes are

assumed to be topologically sorted [4, 13], in the sense that (vi,v j) ∈ E⇔ i < j. For node
vi ∈ V , we introduce Gi = (Vi,Ei) as the subgraph of G restricted to the downstream of
node vi, i.e., Vi = {v j ∈ V | j ≥ i} and Ei = {e ∈ E | ∂±e ≥ i}, and define a subproblem of BP
on Gi as follows.

BPi(b):

Maximize
∑

j∈Vi

p jx j (6)

subject to
∑

j∈Vi

w jx j ≤ b, (7)

∑

e∈E+(v j)

ye−
∑

e∈E−(v j)

ye =



1, if j = i
−1, if j = n,

0, otherwise
(8)

x j ≤
∑

e∈E−(v j)

ye, ∀ j ∈ Vi \ {i}, (9)

x j,ye ∈ {0,1}, ∀ j ∈ Vi,∀e ∈ Ei. (10)

Here b is the remaining knapsack capacity for this subproblem. Let z∗i (b) be the optimal
objective value to BPi(b). Clearly, z∗1(B) gives the optimal objective value to the original
BP, and for i = n we have z∗n(b) = pn if b ≥ wn, and z∗n(b) = 0 otherwise. Then, from the
principle of optimality [4, 13, 14], we have the following recurrence relation.

z∗i (b) = max
e∈E+(vi)

max{z∗∂+e(b), pi + z∗∂+e(b−wi)}, (11)

Let this be maximized at

e∗i (b) = arg max
e∈E+(vi)

{(11)}, (12)

Then, the optimal decision is given by

y∗e(b) =

{
1, if e = e∗i (b),
0, otherwise, (13)

and

x∗i (b) =


1, if pi + z∗

∂+e∗i (b)(b−wi) > z∗
∂+e∗i (b)(b)

0, otherwise.
(14)

Then, computing (11) - (14) backward for i = n−1,n−2, · · · ,1, BP is solved in O(mB)
time and O(nB) space. We call this Algorithm DP.
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3 Shift-and-merge method
In Section 2, we observe that z∗i (b) is a step function of b, and such a function is

completely characterized by a set of discontinuity points. Then, it is natural to consider
computing z∗i (b) only at these points. Indeed, Nemhauser et al [11]. developed a DP
algorithm with lists to solve a binary KP. The same method was also referred to as a
dominance technique [6]. Here we call it a shift-and-merge technique, since it consists
of repeated applications of shift and merge operations, and extend it to a DP algorithm to
solve BP. Although the worst case complexity is not improved by such an approach, in
most cases the actual amount of computation is significantly reduced.

For an arbitrary integer valued step function z(·) defined on the integer interval [0,B],
(b, p) is a discontinuity point if p = z(b) and z(b− 1) < p. Specifically, we assume (0,0)
is always a discontinuity point. Let L(z) = {(b1, p1), (b2, p2), · · · , (br, pr)} be the set of
discontinuity points of z(·) satisfying 0 = b1 < b2 < · · · < br ≤ B. Then, step function z(·)
is completely described by L(z), which we refer to as the list representation of z(·) [11].

In this section, we translate the recurrence relation (11) in the language of lists. Let
E+(i) be explicitly denoted as E+(i) = {ei

1,e
i
2, · · · ,ei

t} with t = |E+(i)|, and for each k (0 ≤
k ≤ t) we introduce a subproblem of BPi(b) as follows.

BPi,k(b):

Maximize (6)
subject to (7)− (10), and yei

k+1
= yei

k+2
= · · · = yei

t
= 0.

This is obtained from graph Gi by removing the last t−k arcs of E+(i), i.e., by considering
graph Gi,k = (Vi,Ei,k), where Ei,k = Ei \ {ei

k+1, · · · ,ei
t}. Let z∗i,k(b) be the optimal objective

value to BPi,k(b).
Clearly,

z∗i,0(b) ≡ 0, (15)

and

z∗i (b) = z∗i,|E+(i)|(b). (16)

Also, from the principle of optimality, we obtain the following relation.

z∗i,k(b) = max{z∗i,k−1(b),z∗j(b), pi + z∗j(b−wi)}, (17)

where j = ∂+ek.
This means that the optimal objective value to BPi,k(b) is given as the maximum value

obtained by the following three alternatives.

A1. Do not take ei
k. In this case we take an arc in {ei

1, · · · ,ei
k−1} with the corresponding

objective value z∗i,k−1(b).
A2. Take ei

k and go to node v j without accepting item i.
A3. Accept item i, and take ei

k to go to node v j.
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Let L0,L1,L2 and Lx be the list representations of z∗i,k−1(b),z∗j(b), pi + z∗j(b−wi), and
z∗i,k(b) respectively. We note that L2 is obtained by shifting L1 by (wi, pi). That is, if
L1 = {(0,0), (b1, p1), · · · , (br, pr)}, we have L2 = {(0,0)}∪ {(wi + bl, pi + pl) | wi + bl ≤ B, l =

0,1, · · · ,r}. We call this shift operation, and denote L2 = Shift(L1, (wi, pi)).
Next, corresponding to the recurrence relation (17), Lx can be obtained by vertically

merging L0,L1 and L2. This means taking the upper envelope of these three step functions
(see Figure 1), and we write this as

Lx = Vertical_Merge(L0,L1,L2).

Figure 1: Vertical merge of lists as Lx = Vertical_Merge(L0,L1,L2).

To compute Lx, we first merge L0,L1 and L2 as Lx = {(bl, pl) | l = 1,2, · · · ,r} in non-
decreasing order of bls. Then, from Lx we remove all the dominated elements. Here we
call (bt, pt) dominated if there exists some (bs, ps) ∈ Lx, satisfying bs ≤ bt and ps ≥ pt.

Then, we present the following shift-and-merge DP algorithm. Algorithm DP_SM

Input: DAG G and knapsack data B, (w j, p j), j = 1,2, · · · ,n.
Output: Lists Li = L(z∗i (b)) for i = 1,2, · · · ,n.
Step 1. Set Ln := {(0,0), (wn, pn)}, and i := n−1.
Step 2. If i < 1, stop.
Step 3. Let L0 := {(0,0)}, and E+(i) be explicitly {ei

1,e
i
2, · · · ,ei

t}, where t := |E+(i)|.
Step 4. For k = 1, · · · , t do

(i) j := ∂+ei
k,L

1 := L j.
(ii) L2 := Shift(L1).

(iii) Lx := Vertical_Merge(L0,L1,L2).
(iv) L0 := Lx.

Step 5. Let Li := L0, i := i−1, and go to Step 2.

Remark 3 DP_SM computes the optimal objective value z∗i (b), but produces neither op-
timal x∗i (b) nor y∗e(b). To obtain these, we make elements of each list be of the form
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(b, p, x∗,e∗), where (x∗,e∗) is the optimal solution to BPi(b) at discontinuity point (b, p).
Then, in Vertical_Merge(L0,L1,L2) in Step 4 (iii) of the above algorithm, (x∗,e∗) is in-
herited from L0, in case of A1, and this is given as (0,ei

k) and (1,ei
k), corresponding to the

cases of A2 and A3, respectively. �

4 Numerical experiments
We implemented DP and DP_SM algorithms in ANSI-C language and conducted

computation on a Dell Precision T7400 workstation (CPU: Xeon X5482 Quad-Core×2,
3.20GHz) for various type and size of instances. We also compare the performance of
these algorithms against the direct solution by CPLEX [5].

4.1 Design of experiments
We prepare graph G = (V,E) as follows. For each pair (i, j) satisfying 1 ≤ i < j ≤ n, we

generate an arc (vi,v j) randomly with probability d/(n−1). Here d is an integer parameter
that controls the number of arcs in G. Since we have n(n−1)/2 pairs of nodes, at this stage
we have about m ≈ nd/2 arcs, and the average degree at each node is approximately d.
Thus, we call d the degree parameter.

Next, for each maximal node vi , v1, we pick up node v j ( j < i) at random and add arc
(v1,vi) to E. Thus, no maximal nodes remain in G other than v1. Similarly, we make all
nodes other than vn non-minimal.

We determine the data for items according to the following scheme. The weight w j is
distributed uniformly random over the integer interval [1,1000], and profit p j is related to
w j in the following ways.

• Uncorrelated case (UNCOR): uniformly random over [1,1000], independent of w j.
• Weakly correlated case (WEAK): uniformly random over [w j,w j + 200].
• Strongly correlated case (STRONG): p j := w j + 20.

4.2 DP results
Table 1 gives the result of computation of DP algorithm with parameters fixed at

B = 5000 and d = 3. The table shows the number of arcs (m), the optimal value (z∗) and
the CPU time in seconds (CPU). Each row is the average over 10 randomly generated
instances.

The algorithm is able to solve instances with n ≤ 30000 within a few seconds, irre-
spective to correlation types. However, it encounters difficulty for the case of n ≥ 40000,
due to the heavy memory requirement of the DP method.

Table 1: DP results (d = 3,B = 5000) as average over 10 instances.

n m
UNCOR WEAK STRONG

z∗ CPU z∗ CPU z∗ CPU
10000 21333 13640.5 0.93 7721.4 0.96 9335.6 1.02
20000 42586 15024.8 1.84 7839.1 1.91 9518.3 2.02
30000 63827 14763.1 2.75 7830.2 2.86 9656.8 3.05
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4.3 MIP results
Table 2 summarizes the computation using MIP solver CPLEX 11.1. From the table

we see that this solver is able to solve larger instances than the DP algorithm, with the
expense of longer CPU time. We set the time limit at 1800 seconds, and for instances
with n ≥ 80000, the solver frequently fails to produce optimal solutions within this time
limit.

Table 2: CPLEX results (d = 3,B = 5000) as average over 10 instances.

n m
UNCOR WEAK STRONG

z∗ CPU z∗ CPU z∗ CPU
10000 21333 13640.5 4.25 7721.4 5.35 9335.6 6.11
20000 42586 15024.8 17.42 7839.1 17.88 9518.3 19.84
40000 84968 14998.8 95.90 7873.8 89.39 9777.9 91.80
80000 170412 15814.9 383.34 8094.9 417.16 9978.1 401.50

4.4 DP_SM results
Table 3 gives the result of computation of DP_SM for larger instances with n ≤

320000. Here, the column of ‘DC%’ shows the total number of discontinuity points
as percentage over nB. We are able to solve larger instances within much smaller CPU
time. Here we observe that the number of discontinuity points increases with the degree
of correlation. In strongly correlated case, we usually have more disconrinuity points than
in uncorrelated cases, and thus DP_SM is more time consuming than in UNCOR cases.

Table 3: DP_SM results (d = 3,B = 5000) as average over 10 instances.

n m
UNCOR STRONG

z∗ DC% CPU z∗ DC% CPU
10000 21333 13640.5 0.97 0.04 9335.6 10.01 0.46
20000 42586 15024.8 0.93 0.10 9518.3 9.75 0.91
40000 84968 14998.8 0.97 0.22 9777.9 9.76 1.81
80000 170412 15814.9 1.01 0.47 9978.1 12.62 4.71

160000 341313 16317.6 1.13 1.07 10209.3 13.32 10.02
320000 682074 17512.4 1.18 2.26 10464.7 15.41 23.07

5 Conclusion
We formulated the backpacker problem as an extension of the binary knapsack prob-

lem, and gave DP and DP_SM algorithms to solve this problem to optimality. These
algorithms were implemented in ANSI-C language, and numerical experiments were car-
ried out to evaluate the performance of the developed algorithms. We were able to solve
the backpacker problem with up to 320000 items of various correlation types within a
few seconds in an ordinary computing environment. Computation was not much influ-
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enced by the change of the correlation types between weight and profit of items, and
over-performed computation by MIP solver.
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