E-Convexity of the Optimal Value Function in Parametric Nonlinear Programming

Yu-Lan Liu1 Hu-Nan Li2

1Faculty of Applied Mathematics
Guangdong University of Technology, Guangzhou, Guangdong 510006
2School of Mathematical Sciences
South China Normal University, Guangzhou, Guangdong 510631

Abstract
Consider a general parametric optimization problem \(P(\varepsilon) \) of the form \(\min_{x} f(x, \varepsilon) \), s.t. \(x \in R(\varepsilon) \). Convexity and generalized convexity properties of the optimal value function \(f^* \) and the solution set map \(S^* \) form an important part of the theoretical basis for sensitivity, stability, and parametric analysis in mathematical optimization. Fiacco and Kyparisis [1] systematically discussed the convexity and concavity of \(f^* \) for the above parametric program \(P(\varepsilon) \) and its several special forms. In this paper, we extend these main results in [1] to the E-convexity of \(f^* \) by introducing E-convexity of set-valued maps.

Keywords
Optimal value function; E-convex functions; E-quasiconvex functions; E-convex set-valued maps

1 Introduction
Let \(\mathbb{R}^n \) denote the \(n \)-dimensional Euclidean space. We consider a general parametric optimization problem of the form

\[
P(\varepsilon) \begin{cases}
\min_{x} f(x, \varepsilon) \\
\text{s.t. } x \in R(\varepsilon),
\end{cases}
\]

where \(f : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^1 \) and \(R \) is a set-valued map from \(\mathbb{R}^k \) to \(\mathbb{R}^n \), as well as several specializations of this problem. The optimal value function \(f^* \) of problem \(P(\varepsilon) \) (sometimes called the perturbation function or the marginal function) is defined as

\[
f^* = \begin{cases}
\inf_{x} \{ f(x, \varepsilon) | x \in R(\varepsilon) \}, & \text{if } R(\varepsilon) \neq \emptyset, \\
+\infty, & \text{if } R(\varepsilon) = \emptyset.
\end{cases}
\]

and the solution set-valued mappings \(S^* \) is defined by

\[
S^*(\varepsilon) = \{ x \in R(\varepsilon) | f(x, \varepsilon) = f^*(\varepsilon) \}.
\]

We also consider the following several special programs of \(P(\varepsilon) \):

\[
P_i(\varepsilon) \begin{cases}
\min_{x} f(x, \varepsilon) \\
\text{s.t. } g_i(x, \varepsilon) \leq 0, i = 1, 2, \ldots, m, \\
h_j(x, \varepsilon) = 0, j = 1, 2, \ldots, p,
\end{cases}
\]
where $S \subset \mathbb{R}^n, g_i : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^1, i = 1, 2, \ldots, m, h_j : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^1, j = 1, 2, \ldots, p,$
i.e., with R defined by

$$R(\varepsilon) = \{x \in S | g_i(x, \varepsilon) \leq 0, i = 1, 2, \ldots, m, h_j(x, \varepsilon) = 0, j = 1, 2, \ldots, p\}.$$

Similarly, generalized convexity properties of the optimal value function f^* and the solution set-valued map S^*, such as continuity, differentiability, and so forth, form a theoretical basis for sensitivity, stability, and parametric analysis in nonlinear optimization. From the mid-1970s to the mid-1980s, the study of this area has been obtained intensively. Many papers had tried to unify these theories and methodologies, for instance [2-4]. Until 1986, Fiacco and Kyparisis[1] have systematically discussed the convexity and concavity of f^* for the above parametric program $P(\varepsilon)$ and its several special forms. Similarly, generalized convexity properties of the optimal value function f^* and the solution set map S^*, also play a role of theoretical basis for sensitivity, stability and parametric analysis in nonlinear programming. Zhang[5] discussed preinvexity and preincavity properties of f^*.

Recently, Youness [6] introduced a class of sets and a class of functions called E-convex sets and E-convex functions by relaxing the definitions of convex sets and convex functions, which has some important applications in various branches of mathematical sciences[7-9].

Motivated both by earlier research works and by the importance of the concepts of convexity and generalized convexity, we introduce the concepts of E-convex set-valued map and essentially E-convex set-valued map, and then develop some basic properties of E-convex and essentially E-convex set-valued maps. Based on these new concepts, E-convexity properties of the optimal value function f^* for the parametric optimization problem $P(\varepsilon)$ and its several special forms are considered.

2 E-convexity of set-valued maps

In this section, we introduce two concepts of generalized convexity of set-valued maps. Throughout this section, M is a nonempty subset in \mathbb{R}^k, and R is a set-valued map from M to \mathbb{R}^n.

Definition 2.1([6]) A set M is said to be E-convex if there is a map $E : \mathbb{R}^k \to \mathbb{R}^k$ such that

$$(1 - \lambda)E(x) + \lambda E(y) \in M,$$

for each $x, y \in M$ and $\lambda \in [0, 1]$.
Lemma 2.1. ([6]) If a set M is E-convex, then $E(M) \subset M$.

It is known from Lemma 2.1 that $E(M) \subseteq M$. Hence, for any set-valued map R, we have the following observations:

Observation (a) The set-valued map $R \circ E : M \to 2^{\mathbb{R}^n}$ defined by

$$(R \circ E)(x) = R(E(x))$$

for all $x \in M$ is well defined.

Observation (b) The Restriction $\tilde{R} : E(M) \to 2^{\mathbb{R}^n}$ of $R : M \to 2^{\mathbb{R}^n}$ to $E(M)$ defined by

$$\tilde{R}(\bar{x}) = R(\bar{x})$$

for all $\bar{x} \in E(M)$ is well defined.

Definition 2.2. ([1]) Let M be a convex set.

(1) The set-valued map R is called convex on M if, for any $\varepsilon_1, \varepsilon_2 \in M$ and $\lambda \in [0, 1]$, we have

$$\lambda R(e_1) + (1 - \lambda)R(e_2) \subseteq R(\lambda e_1 + (1 - \lambda)e_2).$$

(2) The set-valued map R is called essentially convex on M if, for any $\varepsilon_1, \varepsilon_2 \in M$, $\varepsilon_1 \neq \varepsilon_2$ and $\lambda \in [0, 1]$, we have

$$\lambda R(e_1) + (1 - \lambda)R(e_2) \subseteq R(\lambda e_1 + (1 - \lambda)e_2).$$

Based on the concept of convex set-valued maps and essentially convex set-valued maps, we introduce the concepts of E-convex set-valued maps and essentially E-convex set-valued maps.

Definition 2.3. (1) The set-valued map R is called E-convex on M if there is a map $E : \mathbb{R}^k \to \mathbb{R}^k$ such that M is an E-convex set and

$$\lambda (R \circ E)(e_1) + (1 - \lambda)(R \circ E)(e_2) \subseteq R(\lambda E(e_1) + (1 - \lambda)E(e_2)),$$

for any $e_1, e_2 \in M$ and $\lambda \in [0, 1]$.

(2) The set-valued map R is called essentially E-convex on M if there is a map $E : \mathbb{R}^k \to \mathbb{R}^k$ such that M is an E-convex set and

$$\lambda (R \circ E)(e_1) + (1 - \lambda)(R \circ E)(e_2) \subseteq R(\lambda E(e_1) + (1 - \lambda)E(e_2)),$$

for any $e_1, e_2 \in M$, $E(e_1) \neq E(e_2)$ and $\lambda \in [0, 1]$.

Remark 2.1. If R is convex (resp. essentially convex) on M, then R is E-convex (resp. essentially E-convex) on M.

Remark 2.2. If R is E-convex on M, then it is essentially E-convex on M. However, the converse is not true. See example 2.1.

Remark 2.3. If R is E-convex on M, then it is convex-valued with respect to E on M, i.e., $(R \circ E)(e)$ at each $e \in M$ is a convex set. However, An essentially convex set-valued map may not be convex-valued with respect to E at the boundary points of M, as shown below.
Example 2.1. Let $E : \mathbb{R}^2 \to \mathbb{R}^2$ be an identify map, $R : \mathbb{R}^2 \to \mathbb{R}^1$ defined by

$$R(\varepsilon_1, \varepsilon_2) = \begin{cases}
[0, 1], & \text{if } \varepsilon_1^2 + \varepsilon_2^2 < 1, \\
\{0\} \cup \{1\}, & \text{if } \varepsilon_1^2 + \varepsilon_2^2 = 1, \\
0, & \text{if } \varepsilon_1^2 + \varepsilon_2^2 > 1.
\end{cases}$$

and

$$M = \{(\varepsilon_1, \varepsilon_2) | \varepsilon_1^2 + \varepsilon_2^2 \leq 1\}.$$

It is easy to check that R is essentially E-convex on M, but $(R \circ E)(\varepsilon_1, \varepsilon_2)$ is not convex if $\varepsilon_1^2 + \varepsilon_2^2 = 1$.

From now on, let E be a map from \mathbb{R}^k to \mathbb{R}^k and M be a nonempty E-convex set.

Proposition 2.1. Let R be E-convex (resp. essentially E-convex) on M. Then the restriction, say $\bar{R} : C \to 2^{\mathbb{R}^n}$, of R to any nonempty convex subset C of $E(M)$ is convex (resp. essentially convex) on C.

Proof. Let $C \subset E(M)$ be convex, and let $\bar{\varepsilon}_1, \bar{\varepsilon}_2 \in C$ ($\bar{\varepsilon}_1$ and $\bar{\varepsilon}_2$ may not be distinct). Then there exist $\varepsilon_1, \varepsilon_2 \in M$ such that $\varepsilon_1 = E(\varepsilon_1)$ and $\varepsilon_2 = E(\varepsilon_2)$. Since E is convex on M, it follows from the E-convexity of R that

$$\lambda \bar{R}(\bar{\varepsilon}_1) + (1 - \lambda) \bar{R}(\bar{\varepsilon}_2) = \lambda \bar{R}(E(\varepsilon_1)) + (1 - \lambda) \bar{R}(E(\varepsilon_2)) = \lambda (R \circ E)(\varepsilon_1) + (1 - \lambda)(R \circ E)(\varepsilon_2) \subset R(\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2))$$

for all $\lambda \in [0, 1]$. Hence, \bar{R} is convex on C.

Corollary 2.1. Let R be E-convex (resp. essentially E-convex) on M. If $E(M) \subset M$ is a convex set, then the restriction $\bar{R} : E(M) \to 2^{\mathbb{R}^n}$ of R to $E(M)$ is convex (resp. essentially convex) on $E(M)$.

Proposition 2.2. Let $E(M) \subset M$ be a convex set. If the restriction $\bar{R} : E(M) \to 2^{\mathbb{R}^n}$ of R to $E(M)$ is convex (resp. essentially convex) on $E(M)$, then R is E-convex (resp. essentially E-convex) on M.

Proof. Let $\varepsilon_1, \varepsilon_2 \in M$. Then $E(\varepsilon_1), E(\varepsilon_2) \in E(M)$, and by the convexity of $E(M)$, we can obtain $\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2) \in E(M)$ for all $\lambda \in [0, 1]$. Since \bar{R} is convex on $E(M)$, we have

$$\lambda (R \circ E)(\varepsilon_1) + (1 - \lambda)(R \circ E)(\varepsilon_2) = \lambda \bar{R}(E(\varepsilon_1)) + (1 - \lambda)\bar{R}(E(\varepsilon_2)) = R(\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)),$$

which shows R is E-convex on M.

Corollary 2.2. Suppose that $E(M)$ be convex. Then R is E-convex (resp. essentially E-convex) on M if and only if its restriction $\bar{R} : E(M) \to 2^{\mathbb{R}^n}$ is convex (resp. essentially convex) on $E(M)$.

Let the map $I \times E : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^n \times \mathbb{R}^k$ be

$$(I \times E)(x, \varepsilon) = (x, E(\varepsilon)), \quad \text{for any } (x, \varepsilon) \in \mathbb{R}^n \times \mathbb{R}^k.$$
Denote
\[G(R) = \{(x, \varepsilon) | x \in R(\varepsilon), \varepsilon \in M\}. \]

It is easy to show that \(G(R) \) is \(I \times E \)-convex, if and only if
\[(\lambda x_1 + (1 - \lambda)x_2, \lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)) \in G(R) \]
for each \((x_1, \varepsilon_1), (x_2, \varepsilon_2) \in G(R)\) and \(\lambda \in [0, 1]\).

Proposition 2.3. Suppose \(R \) is \(E \)-convex on \(M \). If \(R(\varepsilon) \subset (R \circ E)(\varepsilon) \) for each \(\varepsilon \in M \), then \(G(R) \) is \(I \times E \)-convex.

Proof. Let \((x_1, \varepsilon_1), (x_2, \varepsilon_2) \in G(R)\) and \(\lambda \in [0, 1]\). Then, \(x_1 \in R(\varepsilon_1), x_2 \in \varepsilon R(\varepsilon_2)\). By the assumption that \(R(\varepsilon) \subset (R \circ E)(\varepsilon) \), we obtain
\[x_1 \in (R \circ E)(\varepsilon_1), \quad x_2 \in (R \circ E)(\varepsilon_2). \quad (2.1) \]

Since \(R \) is \(E \)-convex on \(M \) and (2.1), we get
\[\lambda x_1 + (1 - \lambda)x_2 \in R(\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)), \quad (2.2) \]
which means that \((\lambda x_1 + (1 - \lambda)x_2, \lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)) \in G(R)\). Therefore, \(G(R) \) is \(I \times E \)-convex.

Proposition 2.4. Suppose \(G(R) \) is \(I \times E \)-convex. If \((R \circ E)(\varepsilon) \subset R(\varepsilon)\) for each \(\varepsilon \in M \), then \(R \) is \(E \)-convex on \(M \).

Proof. Let \(\varepsilon_1, \varepsilon_2 \in M \) and \(\lambda \in [0, 1]\). Take arbitrary points \(x_1 \in (R \circ E)(\varepsilon_1), x_2 \in (R \circ E)(\varepsilon_2)\). Then, it follows from \((R \circ E)(\varepsilon) \subset R(\varepsilon)\) for each \(\varepsilon \in M \)
\[x_1 \in R(\varepsilon_1), \quad x_2 \in R(\varepsilon_2). \quad (2.3) \]
That is,
\[(x_1, \varepsilon_1), (x_2, \varepsilon_2) \in G(R). \quad (2.4) \]
Since \(G(R) \) is \(I \times E \)-convex and (2.4), we get
\[(\lambda x_1 + (1 - \lambda)x_2, \lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)) \in G(R). \quad (2.5) \]
That is,
\[\lambda x_1 + (1 - \lambda)x_2 \in R(\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)), \]
which shows that \(R \) is \(E \)-convex on \(M \).

3 E-convexity of the optimal value function

In this section, we give the main results.

Definition 3.1. A function \(g : \mathbb{R}^k \to \mathbb{R}^1 \) is said to be \(E \)-convex on a set \(M \subset \mathbb{R}^k \)
if there is a map \(E : \mathbb{R}^k \to \mathbb{R}^k \) such that \(M \) is an \(E \)-convex set and
\[g(\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)) \leq \lambda g(E(\varepsilon_1)) + (1 - \lambda)g(E(\varepsilon_2)), \]
for each \(\varepsilon_1, \varepsilon_2 \in M \) and \(\lambda \in [0, 1]\).
It is easy to show that \(f : \mathbb{R}^n \times \mathbb{R}^k \rightarrow \mathbb{R}^1 \) is \((I \times E)\)-convex on \(\mathbb{R}^n \times M \), if and only if
\[
f(\lambda x_1 + (1 - \lambda)x_2, \lambda E(e_1) + (1 - \lambda)E(e_2)) \leq \lambda f(x_1, E(e_1)) + (1 - \lambda)f(x_2, E(e_2))
\]
for each \((x_1, e_1), (x_2, e_2) \in \mathbb{R}^n \times M \) and \(\lambda \in [0, 1] \).

Theorem 3.1. Consider the general parametric optimization problem \(P(\epsilon) \). If \(f \) is \((I \times E)\)-convex on the set \(\{(x, \epsilon)| x \in R(E(\epsilon)), \epsilon \in M\} \), \(R \) is essentially \(E \)-convex on \(M \), and \(M \) is \(E \)-convex, then \(f^* \) is \(E \)-convex on \(M \).

Proof. Let \(e_1, e_2 \in M, e_1 \neq e_2 \), and \(\lambda \in [0, 1] \). Then, by the \((I \times E)\)-convexity of \(f \) and essential \(E \)-convexity of \(R \), we obtain
\[
f^*(\lambda E(e_1) + (1 - \lambda)E(e_2))
= \inf_{x \in R(\lambda E(e_1) + (1 - \lambda)E(e_2))} f(x, \lambda E(e_1) + (1 - \lambda)E(e_2))
\leq \inf_{x_1 \in (R\epsilon(e_1)), x_2 \in (R\epsilon(e_2))} f(\lambda x_1 + (1 - \lambda) x_2, \lambda E(e_1) + (1 - \lambda) E(e_2))
= \lambda \inf_{x_1 \in (R\epsilon(e_1))} f(x_1, E(e_1)) + (1 - \lambda) \inf_{x_2 \in (R\epsilon(e_2))} f(x_2, E(e_2))
= \lambda f^*(E(e_1)) + (1 - \lambda)f^*(E(e_2)),
\]
i.e., \(f^* \) is \(E \)-convex on \(M \).

Definition 3.2.\(^{(10)}\) A function \(g : \mathbb{R}^k \rightarrow \mathbb{R}^1 \) is said to be \(E \)-quasiconvex on a set \(M \subset \mathbb{R}^k \) if there is a map \(E : \mathbb{R}^k \rightarrow \mathbb{R}^k \) such that \(M \) is an \(E \)-convex set and
\[
g(\lambda E(e_1) + (1 - \lambda)E(e_2)) \leq \max\{g(E(e_1)), g(E(e_2))\},
\]
for each \(e_1, e_2 \in M \) and \(\lambda \in [0, 1] \).

The functions \(g \) is said to be \(E \)-quasiconcave, if \(-g \) is \(E \)-quasiconvex; \(g \) is said to be \(E \)-quasiconvexmonotonic, if \(g \) both is \(E \)-quasiconvex and \(E \)-quasiconcave.

Theorem 3.2. Consider the parametric problem \(P_1(\epsilon) \). If \(g_i \) are \((I \times E)\)-quasiconcave on \(S \times M \), \(h_j \) are \((I \times E)\)-quasiconvexmonotonic on \(S \times M \), \(S \) is convex and \(M \) is \(E \)-convex, then \(R \), given by
\[
R(\epsilon) = \{x \in S| g_i(x, \epsilon) \leq 0, i = 1, 2, \cdots, m, h_j(x, \epsilon) = 0, j = 1, 2, \cdots, p\},
\]
is \(E \)-convex on \(M \).

Proof. Let \(e_1, e_2 \in M \) and take arbitrary points \(x_1 \in (R \circ E)(e_1), x_2 \in (R \circ E)(e_2) \). Then, \(x_1, x_2 \in S \),
\[
g_i(x_1, E(e_1)) \leq 0, g_i(x_2, (E(e_2)) \leq 0, i = 1, 2, \cdots, m
\]
and
\[
h_j(x_1, E(e_1)) = 0, h_j(x_2, (E(e_2)) = 0, j = 1, 2, \cdots, p.
\]
Since \(S \) is convex and \(M \) is \(E \)-convex, we have
\[
\lambda x_1 + (1 - \lambda)x_2 \in S \text{ and } \lambda E(e_1) + (1 - \lambda)E(e_2) \in M \quad \text{for any } \lambda \in [0, 1].
\]
By \((I \times E)\)-quasiconvexity of \(g_i\) on \(S \times M\) and (3.1), we obtain
\[
g_i(\lambda x_1 + (1 - \lambda)x_2, \lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)) \leq \max\{g_i(x_1, E(\varepsilon_1)), g_i(x_2, E(\varepsilon_2))\} \leq 0.
\]
Similarly, by \((I \times E)\)-quasimonotonic of \(h_j\) on \(S \times M\) and (3.2), we can get
\[
h_j(\lambda x_1 + (1 - \lambda)x_2, \lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)) = 0.
\]
Therefore, by (3.3-3.5), we obtain
\[
\lambda x_1 + (1 - \lambda)x_2 \in R(\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2)),
\]
which means that \(\lambda (R \circ E)(\varepsilon_1) + (1 - \lambda)(R \circ E)(\varepsilon_2) \subset R(\lambda E(\varepsilon_1) + (1 - \lambda)E(\varepsilon_2))\), i.e., \(R\) is \(E\)-convex on \(M\).

The following result is now immediate.

Corollary 3.1. Consider the parametric problem \(P_1(\varepsilon)\). if \(f\) is \((I \times E)\)-convex on the set \(\{(x, \varepsilon)| x \in R(E(\varepsilon)), \varepsilon \in M\}\), \(g_i\) are \((I \times E)\)-quasiconvex on \(S \times M\), \(h_j\) are \((I \times E)\)-quasimonotonic on \(S \times M\), \(S\) is convex and \(M\) is \(E\)-convex, then \(f^*\) is \(E\)-convex on \(M\).

Proof. This follows directly from Theorems 3.1 and Theorems 3.2.

The next result follows directly from Theorems 3.2.

Theorem 3.3. Consider the parametric problem \(P_2(\varepsilon)\). if \(g_i\) are \((I \times E)\)-quasiconvex on \(S \times M\), \(h_j\) are \((I \times E)\)-quasimonotonic on \(S \times M\), \(S\) is convex and \(M\) is \(E\)-convex, then \(R\), given by
\[
R(\varepsilon) = \{x \in S|g_i(x) \leq \varepsilon_i, i = 1, 2, \cdots, m, h_j(x) = \varepsilon_{m+j}, j = 1, 2, \cdots, p\},
\]
is \(E\)-convex on \(M\).

Corollary 3.2. Consider the parametric problem \(P_2(\varepsilon)\). if \(f\) is \((I \times E)\)-convex on the set \(\{(x, \varepsilon)| x \in R(E(\varepsilon)), \varepsilon \in M\}\), \(g_i\) are \((I \times E)\)-quasiconvex on \(S \times M\), \(h_j\) are \((I \times E)\)-quasimonotonic on \(S \times M\), \(S\) is convex and \(M\) is \(E\)-convex, then \(f^*\) is \(E\)-convex on \(M\).

Proof. This follows directly from Theorems 3.1 and Theorems 3.3.

References

