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Abstract Integer programming has many applications in economics and management. Apply-
ing lexicographic ordering and linear programming, we develop an iterative method for integer
programming, which defines an increasing mapping from a finite lattice into itself. Given any poly-
tope, within a finite number of iterations, the method either yields an integer point in the polytope
or proves no such point exists. The method is able to determine all integer points in a polytope and
can be easily implemented in parallel and extended to convex integer programming.
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1 Introduction
As a powerful mechanism, integer programming has been extensively applied in eco-

nomics (Scarf, 1981; 1986) and management (Schrijver, 2003). Let P = {x ∈ Rn | Ax+
Gw ≤ b for some w ∈ Rp}, where A is an m× n matrix, G is an m× p matrix, and b is
a vector of Rm. We assume without loss of generality that P is bounded and full di-
mensional. It is well known that determining whether there is an integer point in P is
an NP-complete problem (Gary and Johnson, 1979). To solve such a problem, several
methods have been developed in the literature, which include the cutting plane method in
Gomory (1958), the branch-and-bound method in Land and Doig (1960), the neighbor-
hood method in Scarf (1981, 1986), the basis-reduction method in Lenstra (1983), and the
simplicial method in Dang and Maaren (1998). Further developments of some of these
methods and their variants can be found in Schrijver (2003) and references therein. These
methods play a very important role in the development of integer programming, however,
it remains a challenging problem to determine whether there is an integer point in a poly-
tope and thus appeals for more effective and efficient alternatives, which is the driving
force behind this research.

Let N = {1,2, . . . ,n}. For x and y of Rn, x≤l y if either x= y or xi = yi, i= 1,2, . . . ,k−
1, and xk < yk for some k ∈ N, and x ≤ y if xi ≤ yi for all i ∈ N, where ≤l is called a
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lexicographic order on Rn. Then, for any nonempty subset C ⊆ Rn, one can see that ≤l
is a binary relation and reflexive, transitive and antisymmetric on C. Thus, (C,≤l) is a
totally-order set. Let f be a mapping from C into itself. Under the lexicographic ordering,
f is an increasing mapping from C into itself if f (x)≤l f (y) for all x and y in C with x≤l y.
When C is finite or compact, Tarski’s fixed point theorem (Tarski, 1955) asserts that there
is a point x∗ ∈C such that f (x∗) = x∗, which is a fixed point of f . A significant feature
of Tarski’s fixed point theorem is that C can be a finite set. A study of the computational
complexity of Tarski’s fixed point theorem together with the lexicographic ordering and
linear programming leads us to the idea of the method in this paper.

Applying lexicographic ordering and linear programming, we develop an iterative
method for integer programming, which defines an increasing mapping from a finite lat-
tice into itself. Given any polytope, within a finite number of iterations, the method either
yields an integer point in the polytope or proves no such point exists. The method is able
to determine all integer points in a polytope and can be easily implemented in parallel and
extended to convex integer programming.

The rest of the paper is organized as follows. Based on lexicographic ordering and
linear programming, an iterative method is developed for integer programming in Section
2. For a special class of polytopes, based on componentwise ordering and linear pro-
gramming, an increasing mapping is constructed and an iterative method is proposed in
Section 3.

2 An Iterative Method for Integer Programming Based
on Lexicographic Ordering and Linear Programming

We assume that n ≥ 2. For any real number α and any vector x = (x1,x2, . . . ,xn)
> ∈

Rn, let bαc denote the greatest integer less than or equal to α , dαe the smallest integer
greater than or equal to α , bxc=(bx1c,bx2c, . . . ,bxnc)>, and dxe=(dx1e,dx2e, . . . ,dxne)>.

Let xmax = (xmax
1 ,xmax

2 , . . . ,xmax
n )> with xmax

j = maxx∈P x j, j = 1,2, . . . ,n, and xmin =

(xmin
1 ,xmin

2 , . . . ,xmin
n )> with xmin

j = minx∈P x j, j = 1,2, . . . ,n. Then, xmin ≤ x≤ xmax for all
x ∈ P. Let Zn = {x = (x1,x2, . . . ,xn)

> ∈ Rn | xi is an integer for all i ∈ N} and

D(P) = {x ∈ Zn | xl ≤ x≤ xu},

where
xu = bxmaxc= (bxmax

1 c,bxmax
2 c, . . . ,bxmax

n c)>

and
xl = bxminc= (bxmin

1 c,bxmin
2 c, . . . ,bxmin

n c)>.
Since xmin ≤ x≤ xmax for all x∈ P, hence, x∈D(P) for all x∈ P∩Zn. We assume without
loss of generality that

xu
1− xl

1 ≤ xu
2− xl

2 ≤ ·· · ≤ xu
n− xl

n

and that xl < xmin (If xl
i = xmin

i for some i ∈ N, let xl
i = xmin

i −1).
For y ∈ Rn and k ∈ N, let

P(y,k) = {x ∈ P | xi = yi, i = 1,2, . . . ,k}.
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Definition 1 (An Iterative Method).
For y ∈ D(P),

h(y) = (h1(y),h2(y), . . . ,hn(y))> ∈ D(P)

is given as follows:

Step 0 (Initialization): If y1 = xl
1, let h(y) = xl and Stop; else, let y0 = y, k = 2, and

q = 0, and go to Step 1.
Step 1: If either k > n or k ≤ 1, let h(y) = yq and Stop; else, go to Step 2.
Step 2: If yq ∈ P, let h(y) = yq and Stop. Otherwise, if P(yq,k− 1) 6= /0, go to Step 3;

else, go to Step 6.
Step 3: Solve the linear program

min xk− vk

subject to x ∈ P(yq,k−1) and v ∈ P(yq,k−1),

to obtain its optimal solution (x∗,v∗). Let

dmin
k (yq) = x∗k and dmax

k (yq) = v∗k .

If yq
k ≥ ddmin

k (yq)e, go to Step 4; else, go to Step 5.
Step 4: If bdmax

k (yq)c < ddmin
k (yq)e, go to Step 5; else, proceed as follows: If yq

k >

bdmax
k (yq)c, let yq+1 = (yq+1

1 ,yq+1
2 , . . . ,yq+1

n )> with

yq+1
i =





yq
i if 1≤ i≤ k−1,

bdmax
k (yq)c if i = k,

xu
i if k+1≤ i≤ n,

i = 1,2, . . . ,n, and q = q+1. Let k = k+1 and go to Step 1.
Step 5: If yq

k−1 ≤ xl
k−1 +1, go to Step 6; else, let yq+1 = (yq+1

1 ,yq+1
2 , . . . ,yq+1

n )> with

yq+1
i =





yq
i if 1≤ i≤ k−2,

yq
k−1−1 if i = k−1,

xu
i if k ≤ i≤ n,

i = 1,2, . . . ,n, and q = q+1, and go to Step 2.
Step 6: Let yq+1 = (yq+1

1 ,yq+1
2 , . . . ,yq+1

n )> with

yq+1
i =





yq
i if 1≤ i≤ k−2,

xl
i if k−1≤ i≤ n,

i = 1,2, . . . ,n, q = q+1, and k = k−1. Go to Step 1.
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Theorem 1.
For any given y ∈ D(P),

• if there is no integer point z0 ∈ P such that z0 ≤l y, then h(y) = xl;
• if there is some integer point z0 ∈ P such that z0 ≤l y, then z0 ≤l h(y) ∈ P.

This theorem also shows that the method can be easily implemented in parallel. As a
corollary of Theorem 1, we obtain that

Corollary 1.
Either h(xu) ∈ P or h(xu) = xl , which show that, starting from xu, within a finite number
of iterations, the iterative method either yields an integer point in P or proves no such
point exists. Furthermore, under the lexicographic ordering, h is an increasing mapping
from D(P) into (Zn∩P)∪{xl}.

As follows, we show how to apply the method to compute all integer points in P.

Step 0: Use the method starting from xu to compute an integer point in P. If no integer
point has been found, Stop. Otherwise, let s1 be the solution found by the method,
k = 1, and q = n, and go to Step 1.

Step 1: If sk
q > xl

q, let y0 = (y0
1,y

0
2, . . . ,y

0
n)
> with

y0
i =





sk
i −1 if i = q,

sk
i otherwise,

i = 1,2, . . . ,n, and go to Step 3. Otherwise, let q = q−1 and go to Step 2.
Step 2: If q < 1, Stop. Otherwise, go to Step 1.
Step 3: If y0 ∈ P, let sk+1 = y0 and k = k+1, and go to Step 1. Otherwise, go to Step 4.
Step 4: Use the method starting from y0 to compute an integer point in P. If no inte-

ger point has been found, Stop. Otherwise, let sk+1 be the solution found by the
method, k = k+1, and q = n, and go to Step 1.

The efficiency of the method depends on the shape of P, which should be as “round"
as possible. The basis reduction in (Lenstra et al., 1982) could be applied for this purpose.

3 An Increasing Mapping Based on Componentwise Or-
dering and Linear Programming for a Class of Poly-
topes

In this section, we consider a class of polytopes given by P= {x∈ Rn | Ax≤ b}, where
A is an m×n matrix satisfying that each row of A has at most one positive entry and b is
a vector of Rm. The problem is NP-complete (Lagarias, 1985), though it is a special case
of a general integer program. As a result of the property of A, one can easily obtain that

Lemma 1.
If x1 = (x1

1,x
1
2, . . . ,x

1
n)
> ∈ P and x2 = (x2

1,x
2
2, . . . ,x

2
n)
> ∈ P,

then x̄ = max(x1,x2) = (max{x1
1,x

2
1},max{x1

2,x
2
2}, . . . ,max{x1

n,x
2
n})> ∈ P.
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Given e=(1,1, . . . ,1)> ∈Rn, Lemma 1 implies that maxx∈P e>x has a unique solution,
which is denoted by xmax = (xmax

1 ,xmax
2 , . . . ,xmax

n )>. Let xmin = (xmin
1 ,xmin

2 , . . . ,xmin
n )>,

where xmin
j = minx∈P x j, j = 1,2, . . . ,n. Thus, xmin ≤ x≤ xmax for all x ∈ P.

Let
C(P) = {x ∈ Rn | xl ≤ x≤ xu},

where
xu = bxmaxc= (bxmax

1 c,bxmax
2 c, . . . ,bxmax

n c)>

and
xl = bxminc= (bxmin

1 c,bxmin
2 c, . . . ,bxmin

n c)>.
Then, x ∈ C(P) for all integer points x ∈ P. We assume without loss of generality that
xl /∈ P.

For x ∈ Rn, we define f (x) = bd(x)c with

d(x) =





xmin if P(x) = /0,

argmaxy∈P(x)e
>y otherwise,

where P(x) = {y ∈ P | y≤ x}. From Lemma 1, one can see that d(x) is well defined.

Lemma 2.
f is an increasing mapping from Rn into C(P)∩Zn. Moreover, f (x∗) = x∗ with x∗ 6= xl if
and only if x∗ is an integer point in P.

Applying the increasing mapping f , we obtain an iterative method for determining
whether there is an integer point in P, which is as follows.

Step 0: Let x0 = xu and k = 0. Go to Step 1.
Step 1: If xk ∈ P, the method terminates. Otherwise, go to Step 2.
Step 2: If P(xk) = /0 or xk = xl , the method terminates and there is no integer point in P.

Otherwise, proceed as follows: Solve the linear program

max e>y

subject to Ay≤ b and y≤ xk,

to obtain its unique solution yk. Let xk+1 = bykc and k = k+1. Go to Step 1.

Theorem 2.
Within a finite number of iterations, the method either yields an integer point in P or
proves no such point exists.
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