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1 Introduction
Cellular processes at a molecular level are unavoidably stochastic. In particular, gene

regulation is an inherently noisy process, from transcriptional control, alternative splic-
ing, translation, diffusion to chemical modification reactions of transcriptional factors,
which all involve stochastic fluctuations. Such stochastic noise may not only affect the
dynamics of biological systems but also be exploited by living organisms to actively fa-
cilitate certain functions. From the evolution viewpoint, noises are also assumed to be
used for the cellular and population variability control. Due to very low copy numbers for
many species in living cells, the origin of stochasticity can be traced to random transitions
among discrete chemical states, which implies that a model of gene regulatory networks
should be able to present such discrete nature of small numbers both qualitatively and
quantitatively [1].

Explicitly considering all variables and chemical reactions in a cell is unrealistic for a
gene regulatory network from modeling, analyzing, and computing viewpoint. However,
many different time scales in a cell characterize the gene regulatory processes, which can
be exploited to reduce the complexity of the mathematical models. For instance, the tran-
scription and translation processes generally evolve on a time scale that is much slower
than that of phosphorylation, dimerization or binding reactions of transcription factors.
Moreover, in biological systems, a large class of biological models can be approximately
by stochastic hybrid systems in which some state components are discrete and other are
continuous. Continuous state components are usually involved in fast reactions with high
copy numbers of molecules, whereas discrete state components are in slow processes and
have low copy numbers of molecules. In this work, based on the partial Kramers-Moyal
expansion [2] with the central limit theorem, we exploit such properties to simplify a
complicated molecular network to a hybrid system by giving several models, which can
be applied to the quantitative simulation of a large cellular system. In other words, we aim
to propose a novel stochastic hybrid model for representing chemical master equations,
and provide several computational algorithms to efficiently simulate the stochastically
cellular dynamics.
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Notice that there are two different implications for hybrid systems, i.e., one is a hy-
brid system with both discrete and continuous variables, and the other is a hybrid system
with both stochastic and deterministic dynamics, or stochastic hybrid processes. Hy-
brid simplification approximates partial or all discrete variables by continuous values,
and therefore can drastically reduces computational time by eliminating the simulated
discrete events from computational viewpoint because the computational complexity de-
pends on the number of the discrete jumps. Besides the hybrid simplification based on
central limit theorem, other simplification schemes, such as averaging approximation,
state-aggregation scheme, and stochastic quasi-steady-state approximation, can also be
adopted to simplify the complexity of the complicated molecular networks.

2 Master Equation and Molecular Network
2.1 Reaction-Diffusion Master Equation

The chemical master equation models discrete biochemical reactions within biological
cells, and represents dynamic but primarily non-spatial, treating the cell as a well-mixed
volume or compartment [3]. However, biological cells contain incredibly complex spatial
environments, comprised of numerous organelles, irregular membrane structures, fibrous
actin networks, long directed microtubule bundles, and many other geometrically com-
plex structures. To model such discrete but spatial system, the reaction-diffusion master
equation is able to discretize space, approximating the diffusion of molecules as a con-
tinuous time random walk on a lattice, with bimolecular reactions occurring with a fixed
probability per unit time for molecules within the same voxel (i.e. volumetric and pixel
in a three dimensional space). In particular, exact realizations of the reaction-diffusion
master equation can be created by using the Gillespie algorithm [3].

Let Ω denote a closed volume in R3 for the system. In the reaction-diffusion master
equation model, Ω is divided by a mesh into a collection voxels labeled by vectors i in
an index set I = {1, ...,L}, i.e., i ∈ I. Consider a system containing m chemical reactions
with n molecular species of z. Let z = (z1, ⋅ ⋅ ⋅ ,zL) ∈ Rn×L, where zi is the concentrations
of molecules at voxel-i or compartment i. Let 1l

i ∈ Rn×L be the state, where the number
of all chemical species at all locations is zero, except for the lth chemical species at the ith
location, which is one. Let kl

i j denote the diffusive jump rate for each individual molecule
of the lth chemical species into voxel i from voxel j, for i ∕= j. Since diffusion is treated
as a first order reaction and molecules are assumed to diffuse independently, the total
probability per unit time at time t for one molecule of species l to jump from voxel j to
voxel i is kl

i jz
l
j(t), where kl

ii = 0.

Define rk = (r1
k , ...,r

L
k ) ∈ Rn×L, where ri

k is a vector for the change of the state, i.e.,
ri

k, j is the change in the number of the jth molecule by the kth reaction in the ith voxel.
wi

k(z
i) is the transition rate (≥ 0) from state zi to state zi + rk by the kth reaction occurring

in the ith voxel. The corresponding state change in z due to an occurrence of the kh
reaction in the ith voxel will be denoted by rk1i, i.e. z(t) → z(t)+ rk1i. Therefore, the
reaction-diffusion master equation for the time evolution of P(z; t) with initial state z(0)
at t = 0 is represented as
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∂P(z; t)
∂ t

= ∑
i∈I

∑
j∈I

L

∑
l=1

[kl
i j(z

l
j +1)P(z+1l

j −1l
i ; t)− kl

i jz
l
jP(z; t)],

−∑
i∈I

m

∑
k=1

[wi
k(zi − rk)P(z− rk1i; t)−wi

k(zi)P(z; t)].

Clearly, diffusion is then modelled as a chemical reaction or jumps between the neigh-
bouring compartments. Hence, the Gillespie algorithm can be directly adopted to simulate
the reaction-diffusion master equation numerically.

2.2 Chemical Master Equation
Next we ignore the diffusion effect by focusing the dynamic features of the chemi-

cal reaction network to simplify the model. Consider a system containing m chemical
reactions with n molecular species, where m and n are positive integer numbers. De-
fine (x,y) ∈ Rn and (X ,Y ) to be concentrations and numbers of molecules, respectively.
nx +ny = n, where xi or yi is the concentration of a molecule, i.e., the number divided by
the system size or volume V . Then the dynamics of the system is described by the master
equation [2] with initial state (x0,y0) at t = 0

∂P(x,y; t)
∂ t

=
m

∑
k=1

[wk(x−ϕk/V,y−θk/V )P(x−ϕk/V,y−θk/V ; t)

−wk(x,y)P(x,y; t)], (1)

where (ϕk,θk) ∈ Rn is a vector for the change of the state. wk(x,y) is the transition rate
(≥ 0) from state (x,y) to state (x+ ϕk/V,y+ θk/V ) by the kth reaction. Equation (1)
theoretically provides full information of system performances, but only a few simple
cases are amenable to exact solution due to its complexity for a large number of variables.
Next we exploit the properties of molecular networks to simplify the master equation.

3 Stochastic Hybrid Systems
3.1 Hybrid System with Deterministic Process

Assuming that the number of X is much bigger than that of Y , we can approximate X
by continuous values x, i.e., x = X/V by keeping Y as discrete variables, i.e., y = Y/V .
Therefore, by partial Kramers-Moyal expansion of (1) with respect to x and ϕk/V up to the
first order (i.e., zero-th order and first order), we have the following hybrid representation

∂P(x,y; t)
∂ t

=
m

∑
k=1

[wk(x,y−θk/V )P(x,y−θk/V ; t)−wk(x,y)P(x,y; t)]

−
nx

∑
j=1

∂
∂x j

[(
m

∑
k=1

ϕk jWk(x,y)

)
P(x,y; t)

]
+O(

1
V
), (2)

where wk = WkV is rates of the reactions which are proportional to the volume V based
on mass action law. O( 1

V ) implies that the order of the term is higher than 1/V . Clearly,
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the term of the Taylor zero-th order expansion, i.e., the term ∑m
k=1[⋅] in (2), is the discrete

dynamics or the master equation for discrete variables y, and the term of the Taylor first
order expansion, i.e., the term ∑nx

j=1
∂

∂x j
[⋅] in (2), is the deterministic kinetic dynamics

or corresponds to the Langevin equation for the continuous variables x. The term of the
Taylor second order expansion, i.e., O( 1

V ), corresponds to the diffusion process and when
V → ∞, it approaches zero. Therefore, (2) is a hybrid system with both discrete and
continuous dynamics, or with both stochastic and deterministic processes. Specifically,
the stochastic system for discrete variables Y is

∂P(x,y; t)
∂ t

=
m

∑
k=1

[wk(x,y−θk/V )P(x,y−θk/V ; t)

−wk(x,y)P(x,y; t)] (3)

and the deterministic system for continuous variables x is for j = 1, ⋅ ⋅ ⋅ ,nx

dx j(t)
dt

=
m

∑
k=1

ϕk jWk(x(t),y). (4)

Let δ (θk) = 0 if θk is a zero vector; otherwise δ (θk) = 1. Therefore, defining the
jump intensity w0 = ∑m

k=1 wk(x,y)δ (θk), we have the following algorithm of stochastic
simulation [4, 5, 6, 7] based on Piecewise deterministic Markov Process (PDMP) [8, 9].

Table 1: Algorithm of stochastic simulation for (2) based on PDMP
Step 1. Initialization: set t0 = 0 and fix initial number of molecules (X0/V,Y0/V ).

Step 2. Calculate the propensity function wk, k = 1, ⋅ ⋅ ⋅ ,m.

Step 3. Generate one random number r1 uniformly distributed in [0,1).

Step 4. Integrate the following differential equations

dx j(t)
dt

=
m

∑
k=1

ϕk jWk(x(t),y) for j = 1, ⋅ ⋅ ⋅ ,nx (5)

dq(t)
dt

= −w0(x(t),y)q(t)

with x(ti) = xi, q(ti) = 1 (6)

between ti and ti +∆ti with the stopping condition q(ti +∆ti) = r1. Then we have ∆ti.

Step 5. Generate a second random number r2 uniformly distributed in [0,1). Choose µi
so that µi = the smallest integer satisfying ∑µi

j′=1 w j′(x,y) > r2w0(x,y). Step 6. Execute
the reaction µi, i.e., update (x,y). If ti > Tmax, terminate the computation. Otherwise, goto
Step 2.

Clearly, the continuous variables x are governed by the deterministic system (4) and
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change continuously during each time interval [ti, ti+∆ti) while the discrete variables y re-
main constant. Therefore, x are piecewise continuous variables and may change discretely
at ti +∆ti. On the other hand, y evolve discretely with stochastic motion punctuated by a
sequence of random waiting times ∆ti due to the master equation (3).

3.2 Hybrid System with Diffusion Process
Moreover, we can expand (1) to the second order of V to consider the diffusion effect

[10], i.e.,

∂P(x,y; t)
∂ t

=
m

∑
k=1

[wk(x,y−θk/V )P(x,y−θk/V ; t)−wk(x,y)P(x,y; t)] (7)

−
m

∑
k=1

nx

∑
j=1

∂
∂x j

[
g jk(x,y; t)P(x,y; t)

]
(8)

+
nx

∑
j=1

nn

∑
l=1

∂ 2

∂x j∂xk

(
m

∑
k=1

ϕk jϕkl

2V
Wk(x,y)P(x,y; t)

)
(9)

+O(
1

V 2 ) (10)

where

g jk(x,y; t) = ϕk jWk(x,y)−
ny

∑
l=1

ϕk jθkl

V P(x,y; t)
∂Wk(x,y)P(x,y; t)

∂yl

= ϕk jWk(x,y)−
ny

∑
l=1

ϕk jθkl

V
[
∂Wk(x,y)

∂yl

+Wk(x,y)
∂ lnP(x,y; t)

∂yl
].

Therefore, (8)-(9) can be also expressed by Langevin equations instead of the differential
equations (4), i.e., stochastic differential equations with the continuous variables x for
j = 1, ⋅ ⋅ ⋅ ,n

dx j(t)
dt

=
m

∑
k=1

g jk(x(t),y; t)+
m

∑
k=1

ϕk j√
V

√
Wk(x(t),y)Γk(t), (11)

where Γk(t) are temporally uncorrelated, statistically independent Gaussian white noises,
and are formally defined by

Γk(t) = lim
dt→∞

N (0,1/dt), (12)

where N (m,σ2) denotes the normal random variable with mean m and variance σ2.
For this case, the hybrid system is the combination of discrete stochastic system (3)

for y and continuous stochastic system (11) for x, which can be simulated similarly as the
algorithm of Table 1, i.e., Table 2.

In Table 2, Vj(t) are independent one-dimensional Wiener processes. The stochastic
differential equation can be calculated by Itô integration. Clearly, there is P(x(t),y; t) in
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Table 2: Algorithm of stochastic simulation for (7)-(10) based on PDMP
Step 1. Initialization: set t0 = 0 and fix initial number of molecules (X0/V,Y0/V ).

Step 2. Calculate the propensity function wk, k = 1, ⋅ ⋅ ⋅ ,m.

Step 3. Generate one random number r1 uniformly distributed in [0,1).

Step 4. Integrate the following stochastic differential equations

dx j(t) =
m

∑
k=1

g jk(x(t),y; t)dt +
m

∑
k=1

ϕk j√
V

√
Wk(x(t),y)dVk(t)

for j = 1, ⋅ ⋅ ⋅ ,nx, (13)
dq(t) = −w0(x(t),y)q(t)dt with x(ti) = xi,q(ti) = 1 (14)

between ti and ti +∆ti with the stopping condition q(ti +∆ti) = r1. Then we have ∆ti.

Step 5. Generate a second random number r2 uniformly distributed in [0,1). Choose µi
so that µi = the smallest integer satisfying ∑µi

j′=1 w j′(x,y)> r2w0(x,y).

Step 6. Execute the reaction µi, i.e., update (x,y). If ti > Tmax, terminate the computation.
Otherwise, goto Step 2.

(11) or g jk, which is required to be estimated during the integration. There are many ways
to approximate P(x(t),y; t) such as by finite state projection approach, Gaussian distribu-
tion assumption for the continuous variables, or the equilibrium probability distribution.

In this paper, we consider the following scheme to approximately estimate
∂ lnP(x,y; t)/∂yl . Since y corresponds to discrete variables which are expected to change
dynamics in a slow manner in contrast to the continuous variables x, we assume
∂P(x(t),y; t)/∂yl ≈ 0 or ∂ lnP(x(t),y; t)/∂yl ≈ 0. Specifically, we have

g jk(x,y; t) = ϕk jWk(x,y)−
ny

∑
l=1

ϕk jθkl

V
∂Wk(x,y)

∂yl
. (15)

4 Conclusion
In this paper, we theoretically provide a general framework to derive molecular net-

works with stochasticity based on hybrid systems. We exploit the fast-slow dynamics of
biological systems to reduce the dimensionality, and take advantage of special interaction
structure of continuous - discrete variables to simplify the mathematical model, which
significantly reduce the complexity of molecular networks.
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