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Abstract The purpose of this study is to introduce a new quantitative measure modularity den-
sity into the field of biomolecular networks and develop new algorithms for detecting functional
modules in protein-protein interaction (PPI) networks. Specifically, we adopt the simulated anneal-
ing (SA) to maximize the modularity density and evaluate its efficiency on simulated networks. In
order to address the computational complexity of SA procedure, we devise a spectral method for
optimizing the index and apply it to a yeast PPI network. Our analysis of resulted modules sug-
gests that most of these modules have well biological significance in context of protein complexes.
Comparison with the MCL and the modularity based methods shows the efficiency of our method.
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1 Introduction
Modularity has been considered to be one of the main organization principles of bi-

ological networks in the past decade years. Biological modules as a critical level of bio-
logical hierarchy and relatively independent units play special roles in biological systems
[8]. How to uncover modular structures in various biological networks is a basic step for
understanding cellular functions and organizational mechanisms of biosystems. For ex-
ample, by using the network partition, Zhao et al. (2006) investigated the functional and
evolutionary modularity of human metabolic network from a topological perspective.

One popular class of methods for dissecting modular structure in the field of general
complex networks is based on optimizing a global quality function called modularity
[2, 11] to partition the network into modules. And it has been comprehensively adopted
to analyze biological networks [12, 4, 3, 5]. However, it has recently been shown that the
resolution of the modularity based methods is intrinsically limited. It fails to find small
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communities in large networks—instead, groups of small communities turn out merged
as larger ones [13]. Li et al. (2008) proposed a novel quality function called modularity
density (D) which aims to conquer the resolution limit problem in modularity. They have
tested it on many kinds of small networks for illustration but not on large real networks.

In this study, we aim to introduce the new quantitative measure modularity density
into the modular analysis of biomolecular networks and develop new algorithms for de-
tecting functional modules in protein-protein interaction (PPI) networks. We first adopt
the simulated annealing (SA) technique to maximize the modularity density and evaluate
its advantages on a suit of simulated networks where the modules are known. In order to
conquer the computational burden of SA procedure, we adopt a spectral k-means method
for optimizing the measure and apply it to a yeast PPI network. Our biological analysis of
resulted modules suggests that most of these modules carry distinguished biological sig-
nificance. We also make a comparison of our method with other two methods including
the popular MCL and modularity based methods to verify its effectiveness.

2 Materials and Methods
2.1 Definition of modularity and modularity density

The popular modularity Q is defined by Newman and Girvan (2004). Briefly, when
the nodes of a network are divided into modules, one can compute it as follows:

Q =
m

∑
s=1

[
li
L
−
(

di

2L

)2
]
,

where m is the number of modules, L is the total number of edges in the network, li is
the number of edges between nodes in module i, and di is the total number of degrees of
the nodes in module i. The highest Q value of all possible module separations is called
the network modularity. In the past studies, empirical and simulation studies showed that
the network partition method of maximizing modularity Q (MQ) has good performance.
However, Fortunato and Barthélemy (2007) recently pointed out the serious resolution
limits of this method, and claimed that the size of a detected module depends on the size
of the whole network. The main reason is that the modularity Q does not capture the
information of the number of nodes in a module, and the choice of partition is highly
sensitive to the total number of links in the network.

In the following, we introduce the so-called modularity density D which was proposed
as an alternative measure for describing the modular organization [14]. The characteristic
of this measure is that it is related to the density of subgraphs. We first define the average
modularity degree of subgraph Gi(Vi,Ei) as follows:

ad(Gi) = aid(Gi)−aod(Gi) =
2li− li

ni
,

where aid(Gi) is the average inner degree of the subgraph Gi, which equals to twice the
number of edges in subgraph Gi divided by the number ni of nodes in this subgraph.
aod(Gi) is the average outer degree of the subgraph Gi, which equals to the number of
edges with one node in the subgraph and the other node outside it divided by the number
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ni of nodes in the subgraph. The intuitive idea is that ad(Gi) should be as large as possible
for a valid ‘module’. Then the modularity density D of a partition G1, ⋅ ⋅ ⋅ ,Gm is defined
as the sum of all average modularity degree of Gi for i = 1, ⋅ ⋅ ⋅ ,m. In contrast to Q, D can
be calculated as follows:

D =
m

∑
i=1

ad(Gi) =
m

∑
i=1

2li− li
ni

. (1)

This measure provides a way to determine if a certain mesoscopic description of the
graph is accurate in terms of modules. The larger the value of D, the more accurate a
partition is. So the community detection problem can be viewed as a problem of finding
a partition of a network such that its modularity density D is maximized. The search
for optimal modularity density D is a NP-hard problem due to the fact that the space of
possible partitions grows faster than any power of system size.

Moreover, the phenomenon of multiple resolutions or/and hierarchy of modular struc-
tures have been observed in biological networks [16]. The modularity density D can be
extended for this more general case using a tuning parameter λ as follows [14]:

Dλ =
m

∑
i=1

2λ (2li)−2(1−λ )li
ni

(2)

where λ is a value ranging from 0 to 1, and when λ = 0.5, the D0.5 corresponds to
modularity density D. By varying λ , we can detect detailed and hierarchical organization
of biological systems. In other words, we can divide the network into large modules and
small modules using a small λ and a large λ respectively.

2.2 Simulated annealing for maximizing D (MD)
In principle, the goal of a module detection is to find the ‘optimal’ partition with

largest modularity Q or modularity density D. Several methods have been proposed for
optimizing Q. Most of them rely on heuristic procedures or approximate strategies. Here,
we employ the simulated annealing (SA) technique to maximize Q and D to obtain the
‘best’ determination of the modules of a network for evaluating.

Simulated annealing is a kind of stochastic search technique for optimization prob-
lems. It enables one to find ‘low cost’ configurations without getting trapped in ‘high
cost’ local minima and has many applications in combinatorial optimization problems.
In the searching process, a global parameter T representing temperature is introduced.
When T is high, the system can explore configurations of high cost while at low T the
system only explores low cost regions. Along with the decrease of T , ‘low cost’ configu-
rations can be reached step by step by overcoming small cost barriers. When identifying
modules, the objective is to maximize the quantitative indexes (i.e. Q or D), thus, the cost
is C = −Q or −D. At each temperature, we perform a number of random updates and
accept them with probability:

p =

{
1, if C f ≤Ci

exp
(
−C f−Ci

T

)
, if C f >Ci

(3)

where Ci(C f ) is the cost before(after) the update.
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Specific implementation detail can be seen in [12]. Note that we add a decision cause
to ensure that each potential ‘module’ be connected. The one that performs best consists in
isolating the module from the rest of the network, and performing a ‘nested’ SA, entirely
independent of the ‘global’ one.

In using Q and D as ‘fitness functions’, the method is more direct than those relying
on heuristic procedures. Moreover, SA enables us to carry out an exhaustive search and
to minimize the problem of finding sub-optimal partitions. We should note that the SA
method can’t scale to very large networks, but it is an efficient evaluation method for its
exhaustive characteristic. Several efficient methods for optimizing Q have been proposed,
but designing efficient algorithms for optimizing the new measure (D) is still an essential
and challenging problem.

2.3 Spectral method for maximizing D (SpeMD)
Given a network G = (V,E), and denote its vertex set as V , edge set as E and adjacent

matrix as A. Given a m-partition Pm, define a corresponding n×m assignment matrix
X = [h1,h2, ⋅ ⋅ ⋅ ,hm] with hic = 1 if vi ∈Vc, and hic = 0 otherwise, for 1≤ c≤m. Observe
that since each vertex can only be in one cluster, X1m = 1n. We can reformulate D in
terms of the assignment matrix X as follows:

D =
m

∑
i=1

2li− li
ni

=
m

∑
i=1

hT
i Ahi− (hT

i Bhi−hT
i Ahi)

hT
i hi

=
m

∑
i=1

2hT
i Ahi−hT

i Bhi

hT
i hi

=
m

∑
i=1

hT
i (2A−B)hi

hT
i hi

(4)

where B is the degree matrix. Let h̃i =
hi
∥hi∥ , H̃ = [h̃1, h̃2, ⋅ ⋅ ⋅ , h̃m], note that h̃T

i h̃ j = δkl or
H̃T H̃ = I, then, we can obtain

D =
m

∑
i=1

h̃T
i (2A−B)h̃i

= TrH̃T (2A−B)H̃.

(5)

So the problem of maximizing D can then be expressed as:

maxD = TrH̃T (2A−B)H̃
s.t. H̃T H̃ = I (6)

From the standard result in linear algebra, the optimal H̃ of the above trace maximiza-
tion has close relationship with the leading k eigenvectors of 2A−B by relaxing H̃ as an
arbitrary orthonormal matrix. We can adopt the corresponding spectral algorithms and use
the leading k eigenvectors of 2A−B to optimize the modularity density D. To obtain the
final network partition, we apply the k-means clustering method to cluster eigenvectors.
Importantly, the same principle can be derived for Dλ .
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2.4 The procedure of the algorithm
Given an upper bound K of the number of modules and the adjacent matrix A =

(ai j)n×n of a network. The procedure of the algorithm is stated straightforward as follows:

• Spectral mapping:

1. Compute the diagonal matrix B = (dii), where dii = ∑k aik.
2. Form the eigenvector matrix UK = [u1,u2, ⋅ ⋅ ⋅ ,uK], corresponding to the K

largest eigenvalues of 2A−B.

• k-means: for each value of k, 2≤ k ≤ K

1. Form the matrix Uk = [u2,u3, ⋅ ⋅ ⋅ ,uk] from the matrix UK .
2. Normalize the rows of Uk to unit length using Euclidean distance norm: ui j√

∑ j u2
i j

.

3. Treat the rows of Uk as points in Rk and cluster them into k clusters using
k-means or even other clustering methods.

• Maximizing modularity density D or Dλ with given λ : Pick the k and the corre-
sponding partition Pk that maximizes D or Dλ .

We should note that this type of spectral clustering technique has been successfully ap-
plied to general clustering problems as well as graph clustering problems [10, 17]. Here,
we explore the characteristic of modularity density D, and derive a new spectral clustering
based method for maximize D (Dλ ) (SpeMD). And the SpeMD procedure described here
can be seen as a particular manner of employing the standard k-means algorithm on the
elements of the leading k eigenvectors to extract k clusters simultaneously.

Convergence and computational complexity of the SpeMD procedure are key prob-
lems when this method is applied to large complex networks. Fortunately, several strate-
gies can be employed to improve these problems. First, we can initialize the k-means such
that the starting centroids are chosen to be as orthogonal as possible [18]. This strategy
does not change the time complexity, but can improve the quality of convergence, thus at
the same time reduce the need for restarting the random initialization process. Second,
several fast techniques for solving eigen system have been developed and several methods
of k-means acceleration can also be found in the literature. Based on this type of tech-
niques, for large sparse networks with m∼ n, and k≪ n, the SpeMD procedure will scale
roughly linearly as a function of the number of nodes n [17]. Here we didn’t consider
these ameliorative techniques and only focus on the validity of the SpeMD method.

2.5 Performance measures
All performance measures can be seen in the extended version.

3 Results
In this section, we apply the present method to a suit of simulated networks and a yeast

PPI network to test its efficiency. We first present detailed numerical results to show the
difference of network partition determined by maximizing the modularity density D and
modularity Q with simulated annealing (SA) technique. In general, maximizing D (MD)
can give more detailed and valid results, while maximizing Q (MQ) encounters serious
resolution limit in simulated networks.
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Then we apply the new spectral method for maximizing the generalized Dλ (SpeMD)
to a yeast PPI network to identify functional modules which show significant biological
relevance. Comparison with MQ and MCL, we show that the SpeMD can obtain com-
petitive performance with the well-known MCL method and resolve much finer modular
structure than MQ method. To extract appropriate modules, the SpeMD and MCL both
rely on one parameter. Here, we perform the SpeMD and MCL with adjusted parameters
to obtain the ‘best’ geometric accuracy and separation. For SpeMD, we tune λ from 0.4
to 0.7 in step of 0.05, and for MCL, we sample inflation parameter values from 1.5 to 2
in steps of 0.1.

3.1 Simulated networks
First we do the comprehensive tests on a group of simulated networks which take on

significant modular characteristics. In the work of [14], D-based method has been showed
to be able to obtain competitive performance with Q-based method. However, the size of
artificial networks generated by using Newman’s popular procedure as well as its variant
are too small to show the serious resolution limit problem of Q. Therefore, we devise a
new type of artificial networks. The network is composed of 2m cliques (m n1-clique and
m n2-clique), and external edges are placed randomly with a fixed expectation values so
as to keep the average edge connections kout of each node to nodes of other cliques. So
each network has m(n1 +n2) nodes and about m(n1(n1−1)/2+n2(n2−1)/2)+m(n1 +
n2)kout/2 edges. In the following test, we let n1 = 10 and n2 = 15. Note that we can
also relax cliques as dense modules for testing, but here we just show the clique case for
convenience.
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Figure 1: Left figure: Comparative test of MD and MQ on simulated networks with
known community structures. It is a plot of the fraction of nodes correctly classified with
respect to kout . Each point is an average over 50 realizations of the networks. Right
figure: Number of modules detected by MD and MQ with the real number of cliques
(NC), averaged over 50 network realizations.

The computational results for this experiment are summarized in Fig. 1, where NC
is the number of cliques, i.e., NC = 2m. The left plot of Fig. 1 shows the fraction of
nodes that are correctly classified into the communities (Precision) with respect to kout
by MD and MQ respectively. We can see that MD method based on D-value performs
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much better than MQ method under all the different NC. For instance, for 50 random
networks with NC = 60 and kout = 5, on an average 99.97% nodes are classified correctly
by MD, while only about 72.23% nodes by the MQ. When kout = 8 which indicates the
corresponding networks are difficult to be partitioned, MD still has very high accuracy
(>86%).

The most interesting observation is that performance of MD is almost the same, while
that of MQ is greatly decreasing with the increase of NC (also the size of networks). For
example, for 50 random networks with kout = 6, always on an average >99.9% nodes
are classified correctly by MD on four different sizes of networks with NC = 20, 40, 60,
80, while about 92.40%, 78.18%, 69.75%, 62.59% nodes by the MQ respectively. This
fact shows the serious resolution limit problem of modularity Q, while that can not be
observed on the small networks such as the simulated networks using Newman’s method.

To test the performance of MD and MQ in selecting the number of communities, we
calculate the number of modules. The right plot of Fig. 1 shows the averaged number
of modules on four different sizes of networks (NC = 20, 40, 60, 80) with respect to kout
by MD and MQ respectively. We can see that MD performs much better than MQ. The
MD can almost always identify the right number of modules in four different sizes of
networks with kout ≤ 7. While MQ can not do that. For example, for 50 random networks
with NC = 60 and kout = 7, on an average 59.7 modules are identified by MD, while only
about 37.20 modules by the MQ. For the harder case (kout = 8), MD can sill do much
better than MQ. Actually, even for the easiest case kout = 2, MQ can not identify the
right modules with 52.50 modules for NC=80. This uncovers the underlying resolution
limit just as pointed in [13]. In summary, the MD can recover the underlying community
structure more often than the MQ by a sizable margin in the simulated modular networks.
The modularity density D more relies on local connectivity of a network and can uncover
finer modular structure. While modularity Q more relies on size and total links of a
network and can lead to serious resolution limit. Moreover, the limit is more serious as
size of networks increasing.

3.2 Results on a PPI network
The budding yeast S. cerevisiae PPI network was obtained from the DIP database

(http://dip.doe-mbi.ucla.edu/dip/), which contains human-curated high-throughput and
small-scale binary interactions directly observed in experiments, as well as binary inter-
actions inferred from high-confidence protein complex data. We only considered non-self
physical interactions and built the PPI network. The giant component of the PPI network
is composed of 2559 proteins linked by 7031 nonredundant interactions. In order to test
the ability of SpeMD to extract complexes from the interaction network and compare it
with other two methods, we compared the detected modules to known complexes in yeast
as annotated by the Munich Information Center for Protein Sequences (MIPS) [15] using
the Pol formula.

We apply the SpeMD method to the yeast PPI network to detect functional modules.
Totally, we obtain 279 protein modules of sizes from 4 to 38 with λ = 0.6 (To extract
statistically and biologically significant modules, we remove 48 modules with size ≤
3). A complete list of complexes and modules with functional annotation is provided in
Supplementary Files. Figure 2 presents three such modules. For example, the second one

Exploring Modular Organization of Protein Interaction Networks 367



YGR098C
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Figure 2: Examples of modules which match the MIPS complexes with great signifi-
cance. (A) A seven-member module matches with the SSL2-core TFIIH complex when
it is part of the nucleotide-excision repair factor 3 (NEF3) with (Pol = 10−14.81). (B) A
nine-member module matches with Golgi transport complex which stimulates intra-Golgi
transport and is composed of eight proteins (Pol = 10−21.7).

is a nine-member module which matches with Golgi transport complex for stimulating
intra-Golgi transport with Pol = 10−21.7.

3.3 Comparison with MCL and MQ
There has been many methods for detecting network modules. The comparison of all

the methods are not an easy task. Here, we attempt to compare the MD (SpeMD) with two
types of classical methods: MQ and MCL. Just as we have mentioned, the modularity (Q)
maximization based module-detection method has been comprehensively applied in many
fields including analysis of biological networks. Another method is the Markov Cluster
algorithm (MCL) which was developed by van Dongen [6]. The method simulates a flow
on the network by calculating successive powers of the network adjacency matrix. In each
iteration, an inflation step is applied to enhance the contrast between regions of strong or
weak flow in the network. The process converges towards a partition of the network, with
a set of high-flow regions separated by boundaries with no flow. The value of the inflation
parameter strongly influences the the size and number of the resulted modules.

The module size distribution of detected modules for each method on the PPI network
have been shown in the left plot of Figure 3. The SpeMD and MCL both identify about
(279 and 242) modules without extremely large clusters. The major trend generated by
MD and MCL are both similar to that of the complexes in MIPS database, which sug-
gest the definition of modularity density is reasonable (Note that the MIPS complex is a
combination of hand-curated and experimental complexes. They have some overlap, so
complex curve is higher. But the trend is similar). Unfortunately, the module size distri-
bution of MQ is very different from the previous ones. The MQ only detect 21 modules
with relative large size raging from 39 to 263. As tested on the simulated networks, the
MQ method is highly limited by the resolution problem.

As to biological significance, the accuracy and separation are used for evaluating the
correspondence between complexes and modules from each methods [1]. From the right
plot of Figure 3, we can easily see that the SpeMD and MCL have consistently better
performance than MQ. This means the modularity density based partition method can
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Figure 3: Left figure: Module size distribution of different methods and MIPS pro-
tein complex with size > 3. Right figure: Performance of different methods on the
PPI network. Four different measures including ‘Accuracy’, ‘Cluster-wise separation’,
‘Complex-wise separation, and ‘Clustering-wise separation’ have been used.

produce more biologically significant modules than the modularity based method. And
the new quality function may become an evaluation index of modularity organization of
networks. While MCL has no such evaluation function.

4 Discussion and Conclusion
In summary, our method is very effective for uncovering modular organization in

biomolecular networks. It provides an objective approach to explore the organization
and interactions of biological processes. With the increasing amount of biological ‘inter-
action’ data available, MD (SpeMD) can facilitate the construction of a more complete
view of the composition and interconnection of functional modules and the understand-
ing of the organization of the whole cellular at system level. We plan to automate this
algorithm to compute functional modules for a large number of biological networks. We
hope that related studies will benefit from the present method coupled with the modularity
density D.
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