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Abstract Fractal Interpolation Function is the attractor of Iterated Function System (IFS), to over-
come the weakness of IFS that IFS only reflect the similarity between global region and local region
of a graph, Barnsley put forward the Recurrent Iterated Function System and the Recurrent Frac-
tal Interpolation Function. RIFS reflect the similarity between local and local, it can make more
complicated graph. In his paper, Barnsley strictly proved the existence and uniqueness of the attrac-
tor of RIFS, but he didn’t give the relationship between RIFS and Recurrent Fractal Interpolation
Function. Based on his research, we extended the concept of RIFS and prove the existence and
uniqueness of it’s attractor. Further more, we can see that under our extended definition, the Recur-
rent Fractal Interpolation Function can be seen as the attractor of a RIFS.
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1 Introduction
Iterated function system (IFS) theory is an important part of fractal theory, it is widely

used in fields of image compression due to the pioneering works done by Barnsley [1, 2,
3]. When using IFS to compress an image, the image is first seen as a set named G, then
an IFS will be constructed, of which the attractor (invariant sets) approximates G in a
certain sense. Another field in which IFS is used is fractal interpolation and curve-fitting.
The concept of Fractal interpolation function which was proposed by Barnsley in 1986 is
a totally new interpolation method. It has special advantages on fitting non-smooth curves
[4, 5]. In fact, the fractal interpolation function is just the attractor (invariant set) of an
IFS. Whether we use IFS to compress an image or use fractal interpolation function to fit
a curve, we are actually using the similarities between global regions and local regions of
a graph (function). Therefore, limitations exist inevitably. Based on these considerations,
Barnsley put forward another two concepts: Recurrent Iterated Function System (RIFS)
and Recursive Fractal Interpolation Function.
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RIFS reflects the similarities among local regions of a graph, it can generate more
complex graphics. Barnsley gave a strict proof for the existence and uniqueness of the
invariant measure (invariant set) of a RIFS. However, he did not set up a direct relationship
between RIFS’s attractor and recursive fractal interpolation function. Based on researches
of Barnsley, this paper first extends the definition of RIFS from the viewpoint of graph
theory and product space, then proves the existence and uniqueness of the attractor of the
extended RIFS. Further researches also find that recursive fractal interpolation function
can be seen as the attractor of RIFS under the extended definition.

These finds help us to understand the concept of RIFS better, make the relationship
between RIFS and recursive fractal interpolation function more legible, and also provide
theoretical basis for the applications of RIFS and recursive fractal interpolation function.

2 Recursive iterative function systems
Definition 1 (Recursive Iterative Function Systems [3]). Assume (X , d) is a compact
metric space, ωi : X →X , i= 1,2, . . . ,N is a set of contractive maps, the contractive factors
are 0< si < 1, i= 1,2, ...,N. Denote P=(pi j)N×N as an irreducible row-stochastic matrix,
in other words, for any i, ∑N

j=1 pi j = 1, and for ∀i, j, we have
(1) pi j ≥ 0;
(2) there exist a series of indicators: i1, i2, . . . , iN which satisfy: i1 = i, iN = j and pi1i2 ⋅
pi2i3 ⋅ . . . ⋅ pin−1in > 0.
Then we say that {X ,wi, pi j, i, j = 1,2, ...,N} is a RIFS.

To understand the concept of RIFS better, we reconsider Definition 1.
Regard the map set{w1,w2, ...,wN} as a vertex set V = {v1,v2, ...,vN}, each map wi

corresponds to a vertex vi, we can construct a graph whose vertex set is V according to
the following rules:
(1) there exists a directed edge ei j from vi to v j, iff pi j > 0;
(2) for vertex vi and vertex v j, there exists a path vi1vi2 ...vin satisfying vi = vi1 ,v j = vin , iff
there exits i1, i2, ..., in satisfying pi1i2 ⋅ pi2i3 ⋅ . . . ⋅ pin−1in > 0, where i1 = i, in = j.

Denote the constructed graph as G = (Gv,Ge), where Gv = V . From its construc-
tion, we know that G is a strongly-connected directed graph. Inversely, give a strongly-
connected directed graph G, for each vertex vi, if there is an edge ei j from vi to v j, then
give this edge a weight pi j ∈ (0,1), otherwise, set pi j = 0. For each i, these pi js satisfy the
condition ∑{ j∣ei j∈Ge} pi j = 1. Now a matrix (pi j)N×N is constructed, and from the strong-
connectivity of G we know that for any iand j, there must exit a series of indicators, say
i1, i2, ..., in, which satisfy the condition pi1i2 pi2i3 ...pin−1in > 0, where i1 = i, in = j.

To summarize, a RIFS can be defined from the viewpoint of graph theory as follows.

Definition 2. {X ,{wi}N
i=1;G} is a RIFS, iff

1) wi : X → X is a group of contractive maps, in which si, i = 1,2, ...,N are corresponding
contractive factors;
2) G = (Gv,Ge) is a strongly-connected weighted directed graph that has N vertexes, the
weight of edge (vi,v j) is pi j.

It’s clear that a RIFS becomes to an IFS if pi j = p j > 0. Example 1 will help us to
comprehend RIFS more intuitive:
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Example 1. Set N=3, P1 = (pi j) =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠, P2 = (pi j) =

⎛
⎝

0 1/2 1/2
1/3 1/3 1/3
0 0 1

⎞
⎠,

then matrix P1 satisfies the conditions of definition 1, matrix P2 does not satisfy. Graphics
corresponding to P1 and P2, say G1 and G2 , are respectively shown in Figure 1 and Figure
2.

Figure 1: G1 in Example 1 Figure 2: G2 in Example 1

Apparently, G1 is strongly-connected, while G2 is weakly-connected. According to
Definition 1 and Definition 2, {X ,{wi}N

i=1;G1} can define a RIFS. But if we change
the direction of edge (w2,w3), G2 will become to a strongly-connected graph, and then,
{X ,{wi}N

i=1;G2} becomes to a RIFS.

3 Attractor of RIFS
For a RIFS {X ,wi, pi j, i, j = 1,2, ...,N}, consider the following random process on X :

for an arbitrary point Z0 ∈ X , i0 ∈ {1,2, ...,N}, choose i1 ∈ {1,2, ...,N} with probability
pi0i1 , let Z1 = wi1(Z0), then choose i2 ∈ {1,2, ...,N} with probability pi1i2 and let Z2 =
wi2 ∘wi1(Z0). Repeat this process Zn =win(Zn−1)=win ∘win−1 ∘ ...∘wi1(Z0). It is clear that
Zn depends not only on Zn−1, but also on the choice of in. This means {Zn} is not a Markov

process on X . While if we define another process
∼
Zn = (Zn, in) on

∼
X = X ×{1,2, ...,N},

then {
∼
Zn} turn to a Markov process on

∼
X , the corresponding transition probability is

∼
p((x, i),

∼
B) =

N
∑
j=1

pi jIB(w jx, j), where
∼
B ⊂ ∼

X is a Borel set.

As to the random process {
∼
Zn}, according to reference [3], we have the following theorem.

Theorem 1.
(i). For the above Markov process {

∼
Zn}, there exists an unique stationary initial dis-

tribution (distribution of
∼
Z0) which makes the Markov process {

∼
Zn} a stationary random

process.
(ii). Denote the projection from the above distribution to X as µ , then we have: for any

initial value (x0, i0), distribution of the trajectory x0,wi1(x0),wi2 ∘wi1(x0), ..., converges
to µ with probability 1. µ is called the invariant measure of the RIFS. If we denote the
support of µ as A, then A is called the invariant set or the attractor of the RIFS.
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Now we show that how the trajectory and further the attractor A are determined by
matrix (pi j) or graph G through an example.

Example 2. Let X = [0,1], w1(x) = 1
3 x, w2(x) = 1

3 +
1
3 x, w3(x) = 2

3 +
1
3 x. Give an initial

point (x0, i0), i0 = 1 for example, then we have

i1 = 2, x1 = w2(x0),

i2 = 3, x2 = w3 ∘w2(x0),

i3 = 1, x3 = w1 ∘w3 ∘w2(x0),

i4 = 2, x4 = w2 ∘w1 ∘w3 ∘w2(x0),

. . . ,

x3n = (w1 ∘w3 ∘w2)
∘n(x0),

x3n+1 = w2 ∘ (w1 ∘w3 ∘w2)
∘n(x0),

x3n+2 = w3 ∘w2 ∘ (w1 ∘w3 ∘w2)
∘n(x0).

In other words, if we start from w1(i0 = 1), only three compounds (w3 ∘w2,w1 ∘w3,w2 ∘
w1) are allowed. In contrast, if the RIFS becomes an IFS, in other words, graph G be-
comes to a complete graph, then all possible compounds of w1,w2,w3 are allowed, that is
why the attractor of the IFS is [0,1].

4 A kind of decomposition of the attractor of RIFS
In this part, we will look at the RIFS from the viewpoint of product space, and give a

kind of decomposition of its attractor. The decomposition establishes theoretical founda-
tion for the extension of the definition of RIFS given by Barnsley.

First, we define product space and give its attractor .
Assume that (X j,d j), j ∈ {1,2, ...,N} is a compact metric space, H j is a group of non-

empty compact subset of X j, h j is the Hausdorff distance on H j. It is easy to prove that
(H j,h j) is a compact metric space. We name (H j,h j) as the fractal space corresponding
to (X j,d j).

Now, we define a product space

∼
H = H1 ×H2 × ...×HN = {(A1,A2, ...,AN)∣A j ∈ H j, j = 1,2, ...,N},

the distance on this product space is defined as
∼
h(A,B) = max

j
h j(A j,B j), for any A =

(A1,A2, ...,AN)∈
∼
H and B = (B1,B2, ...,BN)∈

∼
H. With this distance, we can immediately

prove that (
∼
H,

∼
h) is a compact metric space.

Give an indicator set I = {(i, j)∣i, j = 1,2, ...,N} which satisfies the condition that for
every i ∈ {1,2, ...,N}, there exists j ∈ {1,2, ...,N} such that (i, j) ∈ I. In other words, for
any i ∈ {1,2, ...,N}, we have I(i) = { j∣(i, j) ∈ I} ∕= ϕ . For any element (i, j) of I, assume
wi j is the contractive map from X j to Xi, the contractive factor is 0 < si j < 1. Thus we
have di(wi j(x),wi j(y))≤ si jd j(x,y) for any x, y in X j. For an arbitrary set from H j, say A,
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define a map Wi j: Wi j(A) = wi j(A) = {wi j(x)∣x ∈ A}. Then Wi j is a contractive map, and
hi j(Wi j(A),Wi j(B))≤ si jh j(A,B). Now we can define an operator W on the product space
∼
H:

W (A) = (
∪

j∈I(1)
W1 j(A j), ...,

∪
j∈I(N)

WN j(A j)), for any A ∈ ∼
H.

It is easy to prove that W is a contractive map from
∼
H to

∼
Hwith the distance

∼
h, the contrac-

tive factor is s = max{si j,(i, j) ∈ I}< 1. Thus, according to the Banach fixed point theo-
rem, we come to the conclusion that, there exists a unique element A = (A1,A2, ...,AN) ∈∼
H which satisfies

Ai =
∪

j∈I(i)

Wi j(A j) f oralli = 1,2, ...,N.

That is to say W (A) = A, and lim
n→∞

W ∘n(A0) = A for any A0 from
∼
H.

Now, let’s take a look at the relationship between the attractor of RIFS and the attractor
of the above product space. Review Definition 1, set (X j,d j) = (X ,d), I = {(i, I(i))∣i =
1,2, ...,N} where I(i) = { j : p ji > 0}, then from Definition 1 we know certainly that

I(i) ∕= ϕ . Let wi j = wi, (H,h) be the corresponding fractal space,
∼
H = H ×H × ...×H︸ ︷︷ ︸

N

;

∼
h(A,B) =max

i
h(Ai,Bi), W (A) = (

∪
j∈I(1)

w1(A j), ...,
∪

j∈I(N)
wN(A j)). Thus we get a compact

metric spaces (
∼
H,

∼
h) and a contractive map W on

∼
H. Theorem 2 will give the relationship

between the invariant set of W and the invariant set of RIFS.

Theorem 2 ([3]).
Let W be a RIFS under Definition 1 and Definition 2, and A be the attractor of W.

Then, there exists a unique group of compact set {Ai, i = 1,2, ...,N} where Ai ⊂ A and

A =
N∪

i=1
Ai, Ai =

wi(A j)∪
j:p ji>0

.

Theorem 2 tells us that the attractor A of a RIFS can be uniquely decomposed to
N parts: Ai, i = 1,2, ...,N, and the N-tuple (A1,A2, ...,AN) is just the attractor of (

∼
H,

∼
h).

Inversely, as long as the attractor of the metric space (
∼
H,

∼
h) exists, the attractor of the

RIFS {X ,wi, pi j, i, j = 1,2, ...,N} exists definitely. If we get the attractor of (
∼
H,

∼
h), we

get the unique decomposition of the attractor of the original RIFS .

5 Definition of extended RIFS and the existence and
uniqueness of its attractor

Through above discussions, we can see that for an arbitrary compact metric space
(X ,d), as long as the indicator set I satisfies the condition I(i) = { j∣(i, j) ∈ I} ∕= ϕ for

any i, we can construct a corresponding fractal space (
∼
H,

∼
h) and a contractive map W .

492 The 8th International Symposium on Operations Research and Its Applications



Furthermore, according to Theorem 2, the existence and uniqueness of the attractor of
the RIFS {X ,wi, pi j, i, j = 1,2, ...,N} can also be proved. The irreducibility of the matrix
P is not required this time, the value of pi j is not important either, the only emphasis is
whether the row vector of P is non-zero. So, we can give the definition of a RIFS from the
viewpoint of graph theory, and also give the theorem about the existence and uniqueness
its attractor:

Definition 3. {X ,(wi}N
i=1;G} is a RIFS, iff

(1) wi : X → X , i = 1,2, ...,N is a group of contractive map, contractive factors are si
separately;
(2) G = (Gv,Ge) is a directed graph with N vertexes, the in-degree of each vertex is larger
than 1.

Theorem 3. Under Definition 3, the attractor of a RIFS exists and is unique.

6 Recursive fractal interpolation function
Recursive fractal interpolation function is an extension of fractal interpolation func-

tion. The latter is the attractor of IFS, we will see in this part that recursive fractal inter-
polation function is the attractor of RIFS.

Let I = [0,1], K = I×R, wi(i = 1,2, ...,N) is an affine transformation and has the form
of

wi

(
x
y

)
=

(
ai 0
ci di

)(
x
y

)
+

(
ei
fi

)
, where ∣di∣< 1.

It’s easy to prove that under the metric d∗((x1,y1),(x2,y2)) = ∣x1 − x2∣+ 1−a
2c ∣y1 − y2∣, wi

is a contractive map with s = max{ 1+a
2 ,d} as its contractive factor, where a = max{∣ai∣},

c = max{∣ci∣}, d = max{∣di∣}. Beyond this, wi also meets the following conditions:
Give a data set {(xi,yi)}N

i=0, where 0 = x0 < x1 < ... < xN = 1 is a division of I, denote
Ii = [xi−1,xi], i = 1,2, ...,N, for any Ii,
(1) there exists an interval Ji = [xl(i),xr(i)] which satisfies that xr(i)− xl(i) > xi −xi−1, l(i),
r(i) ∈ {0,1,2, ...,N}, and
(2) wi((xl(i),yl(i)) = (xi−1,yi−1), wi((xr(i),yr(i)) = (xi,yi).

Reference [6] proved the existence and uniqueness of the attractor of RIFS determined
by {wi, i = 1,2, ...,N} , while we will see that if we use the extended definition of RIFS
and Theorem 3 in part 5, the existence and uniqueness of the recursive fractal interpolation
function is apparent.

Proof. Define a directed graph G as follows:

there is a directed edge from j to i, iff I j ⊂ Ji.

It is obvious that, the in-degree of every vertex of G is larger than 2, then {K,wi,G1, i =
1,2, ...,N} is a RIFS according to Definition 3. From Theorem 3, the attractor (invariant
set) of this RIFS exists and is unique. From reference[1], we also know that this attractor
is just the image of a continuous function F on I, and thatF interpolates on {(xi,yi)}N

i=0.
So, the attractor (invariant set) of {K,wi,G1, i = 1,2, ...,N} is the recursive fractal inter-
polation function determined by {wi, i = 1,2, ...,N}.
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The following example shows us differences between Definition 1 and Definition 2.

Example 3. Set N = 4, let J1 = J2 = I1 ∪ I2,J3 = J4 = I3 ∪ I4. The corresponding graph
G3 is shown in Figure 3.

Figure 3: G3 in Example 2

Obviously, G3 is non-connective. However, G3 can determine a RIFS with an unique
attractor according to Definition 3.
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