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Abstract In this paper, we investigate a growing random graph process, which allows loops and
multiple edges. Based on the first-passage probability of Markov chains, we provide a rigorous and
straightforward proof to the existence of the degree distribution of a random graph process, and
finally show the precise expression of degree distribution. Numerical simulations reveal that our
theoretical derivations are consistent with simulation values.
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1 Introduction
Recently, there has been considerable interest in the growing properties of human in-

teraction networks such as the World Wide Web(WWW), the citation networks and the
social networks. These networks have different physical structures, with different defini-
tions for their nodes and links. However they appear to display considerable topological
similarity, having degree distributions behave as power laws.

Barabasi and Albert[1-3] found that for many real-world networks, e.g., WWW, the
fraction of vertices with degree k is proportional over a large range to a power-law tail,
i.e. P(k)∼ k−γ , where γ is a constant independent of the size of the network. For purpose
of opening up mechanism producing scale-free property, they proposed the well known
BA model and summarized the reasons: growth and preferential attachment.

Because of the limitation of BA model and imprecision of mean field method, scholars
make their efforts to put forward different techniques to solve it. For example, Krapivsky
et al.[4] let Nk(t) be the number of vertices in network with degree k at time t, and they
used the rate equations to show degree distribution for the BA model with m = 1. Doro-
govtsev et al.[5] considered ki(t), the degree of vertex added at time i evolved at time t.
They used P(k, i, t) to express the probability of vertex i having k edges at time t, and

let the average degree P(k, t) = 1
t

t
∑

i=1
P(k, i, t) to be the network degree at time t. They

presented the attraction model, where each new vertex has an initial attraction a, and got
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stationary distribution: P(k) = 2m(m+1)
k(k+1)(k+2) with a = m. In fact, the definitions of [4] and

[5] are equivalent, since with properties of expectation, we have E(Nk(t)) =
t
∑

i=1
P(k, i, t).

Bollobás et al.[6] presented a modified BA model, also called LCD model. They used
n-pairing method to study E(♯n

m(d)), the average number of vertices with indegree d and
applied martingale inequality[7] to show ♯n

m(d)
n ∼ d−3. Buckley and Osthus[8] generalized

the work of Bollobás[6] to incorporate random selections. Jordan[9] used a slightly dif-
ferent mathematically precise version of [6] to obtain the degree distribution of [5]. They
also generalized the model with randomization.

In this paper,we study the LCD model proposed by Bollobás et al.[6] again from a
new perspective. Based on the first-passage probability of Markov chains, we propose a
new approach to provide a rigorous proof to the existence of the degree distribution of this
model, and we also prove that the degree distribution obeys power-law form. Moreover,
numerical simulations reveal that our theoretical derivations are consistent with simula-
tion values. Because of allowing loops and multiple edges, this paper also gives more
detailed results similar to the special case of Cooper and Frieze[10].

2 Model Description
As Bollobás[6] stated, start with the case m = 1. Consider a fixed sequence of vertices

v1,v2, ⋅ ⋅ ⋅ . Inductively define a random graph process (Gt
1)t≥0 so that Gt

1 is a directed
graph on {vi : 1 ≤ i ≤ t}, as follows. Start with G0

1 the graph with no vertices, or with
G1

1 the graph with one vertex and one loop. Given Gt−1
1 , form Gt

1 by adding the vertex vt
together with a single edge directed from vt to vi, where i is chosen randomly with

P{i = s}=
{

dGt−1
1 (vs)
2t−1 1 ≤ s ≤ t −1,

1
2t−1 s = t.

(1)

For m > 1 add m edges from vt one at a time. Define the process (Gt
m)t≥0 by running

the process (Gt
1) on a sequence v′1,v

′
2, ⋅ ⋅ ⋅ ; the graph Gt

m is formed from Gmt
1 by identifying

the vertices v′1,v
′
2, ⋅ ⋅ ⋅ ,v′m to form v1, identifying v′m+1,v

′
m+2, ⋅ ⋅ ⋅ ,v′2m to form v2, and so

on.

3 Degree distribution analysis with m = 1
Theorem 1.
For m = 1, the steady-state degree distribution of the LCD model exists, and is given by

P(k) =
2(1+1)

k(k+1)(k+2)
∼ 4k−3 > 0. (2)

Instead of studying martingale Xt = E[♯n
1(k)∣Gt

1) (where 0 ≤ t ≤ n), following Doro-
govtsev et al.[5], consider ki(t) as a random variable, and let P(k, i, t) = P{ki(t) = k}
be the probability of vertex i having k edges at time t, also take the average degree

P(k, t) = 1
t

t
∑

i=1
P(k, i, t) to be the definition of the network degree at time t. Thus ki(t)
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is a nonhomogeneous Markov chain[11]. The state-transition probability of this Markov
chain is given by:

P{ki(t +1) = l∣ki(t) = k}=

⎧
⎨
⎩

1−ak,t l = k,
ak,t l = k+1,
0 otherwise.

(3)

where ak,t =
k

2t+1 , k = 1,2, ⋅ ⋅ ⋅ , t +2− i, and i = 1,2, ⋅ ⋅ ⋅ .
Obviously, to the LCD model, P(k, t, t) = δk,1(1−a1,t−1)+δk,2a1,t−1, where δ is the

Kronecker-Delta function.
Consider the first-passage probability f (k, i, t) of the Markov chain ki(t), f (k, i, t) =

P{ki(t) = k,ki(l) ∕= k, l = 1,2, ⋅ ⋅ ⋅ , t−1}. Based on the concept and techniques of Markov
chains, the relationship between the first-passage probability and the probability of vertex
degrees are as follows:

Lemma 1.
For m = 1, when k > 1, i ∕= s, we have

f (k, i,s) = P(k−1, i,s−1)ak−1,s−1, (4)

P(k, i, t)= (1−a1,i−1) f (k, i, i+k−1)
t

∏
j=i+k

(1−ak, j−1)+
t

∑
s=i+k−2

f (k, i,s)
t

∏
j=s+1

(1−ak, j−1).

(5)

Proof. From the construction of LCD model, first passage to degree k at time s means
the degree reaches k−1 at time s−1, and will get a degree at time s. This is what Eq.(4)
means.

Because of allowing loops, the degree of a vertex can be 1 or 2 at the first step. If the
degree is 1, the earliest time for the degree of vertex i to reach k is at step i+ k− 1, and
the latest time to do so is at step t. Or else, the earliest time for the degree of vertex i to
reach k is at step i+ k−2. After the degree of this vertex becomes k, it will not increase
any more. Thus Eq.(5) is established.

Lemma 2.
For m = 1, lim

t→∞
P(1, t) exists, and

P(1)≜ lim
t→∞

P(1, t) =
2
3
> 0. (6)

Proof. From the construction of LCD model or with Eq.(3), it follows that

P(1, i, t +1) = (1−a1,t)P(1, i, t).

Summing i from 1 to t +1 on both sides, since P(1, t +1, t +1) = 1−a1,t , we have

P(1, t +1) = (1−a1,t)
t

t +1
P(1, t)+

1
t +1

(1−a1,t).

With initial condition P(1,1) = P(1,1,1) = 0 and Stolz theorem[12], Eq.(6) is obtained.
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Lemma 3.
For m = 1, when k > 1, if lim

t→∞
P(k−1, t) exists, then lim

t→∞
P(k, t) also exists and

P(k)≜ lim
t→∞

P(k, t) =
k−1
k+2

P(k−1)> 0. (7)

Proof. Observe that P(k, i, t) = 0, when i > t+2−k. Since in this case even if the degree
of vertex i increases by 1 each time, it can’t reach degree k at t. Then, it follows from
Lemma 1 that

P(k, t) =
1
t

t

∑
i=1

P(k, i, t) =
1
t

t+2−k

∑
i=1

P(k, i, t)

= P(t)+
1
t

t

∏
j=k

(1−ak, j−1)×{P(k−1,k−2)
(k−1)(k−2)

2k−3

+
t

∑
l=k

P(k−1, l −1)
(k−1)(l −1)

2l −1

l

∏
h=k

(1−ak,h−1)
−1}.

where P(t) = 1
t

t+2−k
∑

i=1
[(1− a1,i−1)P(k− 1, i, i+ k− 2)ak−1,i+k−2

t
∏

j=i+k
(1− ak, j−1)]. How-

ever, P(t) < 1
t

t+2−k
∑

i=1

k−1
2(i+k)−3 < (k − 1) ln t+β

t , where β is the Euler constant. Take lim-

its on both sides, it is easy to get lim
t→∞

P(t) = 0. Use Stolz theorem like Lemma 2, we

have lim
t→∞

P(k, t) = k−1
k+2 P(k− 1) > 0. Therefore, lim

t→∞
P(k, t) also exists and Eq.(7) is thus

proved.

Proof of Theorem 1
By mathematical induction, if follows from Lemmas 2 and 3 that the steady-state degree
distribution of the LCD model with m = 1 exists. Then, solving Eq.(7) iteratively, we
obtain P(k) = k−1

k+2 P(k−1) = 2(1+1)
k(k+1)(k+2) ∼ 4k−3 > 0.□

4 Degree distribution analysis with m ≥ 2
Theorem 2.
For m ≥ 2, the steady-state degree distribution of the LCD model exists, and is given by

P(k) =
2m(m+1)

k(k+1)(k+2)
∼ 2m2k−3 > 0. (8)

For m≥ 2, according to the description of LCD model, m steps of graph Gmn
1 generates

one vertex in graph Gn
m. Note capital letters as the time and vertices in graph Gn

m, while
lower case as the time and vertices in graph Gmn

1 . From the step (I−1)m+1 to (I−1)m+
m in graph Gmn

1 is the adding of the Ith vertex in graph Gn
m. Denote t = (I − 1)m+ r,

where I = 1,2, ⋅ ⋅ ⋅ ,⌈ t
m⌉; r = 1,2, ⋅ ⋅ ⋅ ,m. Consider kI(t), the degree of vertex I at time

t ≥ (I −1)m+1. For variable t, kI(t) is a nonhomogeneous Markov chain.
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When t = (I − 1)m + r,r = 1,2, ⋅ ⋅ ⋅ ,m − 1, the state-transition probability of this
Markov chain is given by:

P{kI(t +1) = l∣kI(t) = k}=

⎧
⎨
⎩

1−bk+1,t l = k+1,
bk+1,t l = k+2,

0 otherwise.
(9)

where bk+1,t =
k+1
2t+1 and k = 1,2, ⋅ ⋅ ⋅ ,2r.

When t ≥ Im, the state-transition probability of this Markov chain is given by:

P{kI(t +1) = l∣kI(t) = k}=

⎧
⎨
⎩

1− ck,t l = k,
ck,t l = k+1,
0 otherwise.

(10)

where ck,t =
k

2t+1 and k = m,m+1, ⋅ ⋅ ⋅ ,2m+ t − Im.

Let P(k, I,T ) = P{KI(T ) = k} (or P̂(k, I, t) = P{kI(t) = k}) be the degree probability

of vertex I at step T (or t). As above, take the average degree P(k,T ) = 1
T

T
∑

I=1
P(k, I,T ) to

be the definition of the network degree at time T .
Consider the first-passage probability of the Markov chain kI(t). f̂ (k, I, t) = P{kI(t) =

k,kI(l) ∕= k, l = 1,2, ⋅ ⋅ ⋅ , t−1} and the first-passage probability of the Markov chain kI(T ).
f (k, I,T ) = P{KI(T ) = k,KI(L) ∕= k,L = 1,2, ⋅ ⋅ ⋅ ,T −1}. Based on the concept and tech-
niques of Markov chains, we have:

Lemma 4.
For the first-passage probability, when 1 < I = S, we have

f (k, I, I) =

⎧
⎨
⎩

m
∏

r=1
(1−br,(I−1)m+r−1) k = m,

m
∏

r=1
b2(r−1)+1,(I−1)m+r−1 k = 2m,

m
∑

r=k−m
f̂ (k− (m− r), I,(I −1)m+ r)⋅

m
∏

q=r+1
(1−bk−(m−r)+(q−r),(I−1)m+q−1) m < k < 2m.

(11)

When 1 < I = S,m < k < 2m, we have

f̂ (k−(m−r), I,(I−1)m+r)= P̂(k−(m−r)−2, I,(I−1)m+r−1)bk−(m−r)−1,(I−1)m+r−1.
(12)

When 1 ≤ I < S,k > m, we have

f (k, I,S) =
m

∑
r=1

f̂ (k, I,(S−1)m+ r)
m

∏
u=r+1

(1− ck,(S−1)m+u−1), (13)

f̂ (k, I,(S−1)m+ r) = P̂(k−1, I,(S−1)m+ r−1)ck−1,(S−1)m+r−1. (14)
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For the vertex degree probability, when 1 < I ≤ T , we have

P(k, I,T ) =

⎧
⎨
⎩

m
∏

r=1
(1− cr,(I−1)m+r−1)

T
∏

A=I+1

m
∏

q=1
(1− cm,(A−1)m+q−1) k = m,

T
∑

S=I
f (k, I,S)

T
∏

A=S+1

m
∏

r=1
(1− ck,(A−1)m+r−1) k > m.

(15)

Proof. From Eq.(9), it is easy to obtain Eq.(11)-Eq.(12), substitute Eq.(9) for Eq.(10), we
will get Eq.(13)-Eq.(15).

Lemma 5.
For m ≥ 2, lim

T→∞
P(m,T ) exists, and

P(m)≜ lim
T→∞

P(m,T ) =
2

m+2
> 0. (16)

Proof. For 1≤ I ≤T , from the construction of LCD model, it is easy to get that P(m,1,T )=
0. With Eq.(15) of Lemma 4 and Stolz theorem, Eq.(16) is proved like Lemma 2.

Lemma 6.
For m ≥ 2, when k > m, we have

lim
T→∞

1
T

T−1

∑
I=1

f (k, I, I)
T

∏
A=I+1

m

∏
r=1

(1−bk,(A−1)m+r−1) = 0. (17)

And if lim
T→∞

P(k−1,T ) = P(k−1) exists, then

lim
T→∞

1
T

T

∑
I=1

P̂(k−1, I,T m+ r−1) = P(k−1). (18)

Proof. With Eq.(11) and Eq.(12)of Lemma 4, Eq.(17) is easy to be established. Eq.(18)
is obtained with principle of adjacency.

Lemma 7.
For m ≥ 2, when k > m, if lim

T→∞
P(k−1,T ) exists, then lim

T→∞
P(k,T ) also exists and

P(k)≜ lim
T→∞

P(k,T ) =
k−1
k+2

P(k−1)> 0 (19)

Proof. It follows from Eq.(15) of Lemma 4 that

P(k,T ) =
1
T

P(k,T,T )+
1
T

T−1

∑
I=1

f (k, I, I)
T

∏
A=I+1

m

∏
r=1

(1− ck,(A−1)m+r−1)

+
1
T

T−1

∑
I=1

T

∑
S=I+1

f (k, I,S)
T

∏
A=S+1

m

∏
r=1

(1− ck,(A−1)m+r−1)

Obviously, the limit of first item is also 0. With Lemma 6, the limit of second item is 0.
We only need to consider the third item.
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From Eq.(13) and Eq.(14), we obtain

1
T

T−1

∑
I=1

T

∑
S=I+1

f (k, I,S)
T

∏
A=S+1

m

∏
r=1

(1− ck,(A−1)m+r−1)

=
1
T

T

∏
A=3

m

∏
q=1

(1− ck,(A−1)m+q−1)

{

m

∑
r=1

P̂(k−1, I,m+ r−1)ck−1,m+r−1

m

∏
u=r+1

(1− ck,m+u−1)

+
T

∑
S=3

m

∑
r=1

S−1

∑
I=1

P̂(k−1, I,(S−1)m+ r−1)ck−1,(S−1)m+r−1

m

∏
u=r+1

(1− ck,(S−1)m+u−1)

S

∏
B=3

m

∏
h=1

(1− ck,(B−1)m+h−1)
−1
}
.

With Stolz theorem, we have P(k)≜ lim
T→∞

P(k,T ) = k−1
k+2 P(k−1)> 0.

Proof of Theorem 2 By mathematical induction, if follows from Lemmas 5 and 7 that
the steady-state degree distribution of the LCD model with m ≥ 2 exists. Then, solving
Eq.(19) iteratively, we obtain P(k) = k−1

k+2 P(k−1) = 2m(m+1)
k(k+1)(k+2) ∼ 2m2k−3 > 0.□

5 Simulations
Section 3 and 4 shows that the degree distribution of the LCD model follows power-

law with degree exponent 3. In this section, we performed numerical simulations to il-
lustrate the schemes discussed above. The following figures are simulations and analytic
results of LCD model with m= 1,2,5. Figure 1 is the case of m= 1, the simulation results
fit with P(k) ∼ 4k−3 very well. Figure 2 is the case of m > 1, the simulation results fit
well with P(k)∼ 2m2k−3 either. All numerical values are the average of 20 times.

Figure 1: Degree distribution of the LCD
model with m = 1, t = 2000. The slope of
the solid line is γ = 3, which corresponds
to Eq.(2) of theoretical derivation.

Figure 2: Degree distribution of the LCD
model with m ≥ 1. ∘ and ∗ are simulation
results with m = 2, t = 2000 and m = 5,
t = 2000 respectively. The solid line and
dashed line correspond to Eq.(8) of theo-
retical derivation with m = 2 and m = 5 re-
spectively. Both of their slope are γ = 3.
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6 Conclusion
From the perspective of Markov chains, we considered the degree of vertex i at time t

i.e., ki(t) as a Markov chain and with the technical of first-passage probability, we give a
rigorous proof to the existence of the steady degree distribution and give the exact formula
of degree distribution to the LCD model. In order to check the feasibility of the analytical
results obtained in this paper, we compare the analytical results with the simulations, we
can observe that there is an overall good agreement between the simulated data and the
analytical results. The method proposed in this paper is of universal and can be used
in other models, such as the attraction model[5] and models whether allowing multiple
edges or not.
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