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Abstract Concept of locally ε-maximal is proposed and employed to explored the optimization
problem of a set of convex functions on a Banach space in this paper. Generalized saddle point
(GSP) is also used to study the optimization problem , which is equivalent to the optimal solu-
tion under the condition of locally ε-maximal. An application of the optimization theory to best
simultaneous approximation is presented in the paper.
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1 Introduction
It is well known that convex optimization in Banach space has been much interested

by people because of its wide range of application in mathematics and engineering. The
book written by Th. Precupanu and Viorel Barbu [9] shows that convexity is very essential
and useful in optimization theories. The characterization theory of best approximation,
collected in a book written by Ivan singer [2], can be generalized to convex optimiza-
tion, which shows the relationship between best approximation and convex optimization
in locally convex space using subdifferentials and directional derivatives. Nonlinear opti-
mization in normed linear spaces has been discussed by [14], but the relationship between
best approximation and convex optimization was not in-depth study. Concept of gener-
alized saddle point (GSP) was introduced and used to study optimization problem on a
Banach space, and its application to best Simultaneous approximation is investigated, that
the Kolmogorov condition, an important tool of best approximation, is equivalent to GSP
[17].

Based on the study in [17, 18], the research on integrated optimization in Banach
space is furthered in this paper. Concept of locally-ε-maximal is proposed and employed
to analysis the optimization problem of a set of convex functions, under which gener-
alized saddle point(GSP), Fréchet differentiable and Gateaux derivable are equivalent to
optimal solution respectively. An application of the optimal theory is explored in best
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simultaneous approximation, and the equivalences in a concise format are given in the
research.

The rest of this paper is organized as follows. Concept of locally ε-maximal is pro-
posed in section 2 and Fréchet differentiable and Gateaux derivable are employed to dis-
cuss the optimization problem, which displays the concept plays an important role in
discussion. The GSP [17] is employed to explored equivalences between optimal solution
and GSP, Fréchet differentiable and Gateaux derivable in section 3. An application of the
results presented in the section 2 and 3 to best approximation is given in Section 4.

2 Integrated Optimization
Assume X be a Banach space, X∗ be the dual space of X , namely, the set of all the

linear functional on X , and H be a set of convex real-valued functions ϕs on X , i.e.,
ϕ : X → ℝ, where ℝ is the real number field. We define Γ = sup

ϕ∈H
ϕ , that is to say, Γ(x) =

sup
ϕ∈H

ϕ(x), x ∈ X . Let G be a subset of X , we consider optimization problem

(Γ,G) : inf
g∈G

Γ(g).

If g0 ∈ G, it satisfies Γ(g0) = inf
g∈G

Γ(g), then we call g0 an optimal solution of (Γ,G). Let

P(Γ,G) be the set of all the optimal solution of (Γ,G), namely, P(Γ,G) = {g0 ∈G : Γ(g0) =
inf
g∈G

Γ(g)}. When ϕ is defined as ϕx(⋅)= ∣∣x−⋅∣∣X , the optimization problem (ϕ ,G), in fact,

is the best approximation of x by the elements of G, which has been investigated in many
literatures such as [2, 3, 5, 6, 10] etc..

We have known that Γ(x) is a convex function on Banach space X [17]. It is common-
sense that convex function on X is continuous, so the function Γ(x) is. Now we introduce
some notations for convenient discussion.

M(Γ,x) = {ϕ ∈ H : Γ(x) = ϕ(x), x ∈ X}

U(x0,δ ) = {x : ∥x− x0∥< δ , x ∈ X}

G̃g0 =
∪

g∈G

{gα : gα = (1−α)g0 +αg, α ∈ [0,1],g0 ∈ G},

Definition 1. We call ϕ Fréchet differentiable at x0, if there exists a fx0 ∈ X∗ such that

lim
∥h∥→0+

∣ϕ(x0 +h)−ϕ(x0))− fx0(h)∣
∥h∥ = 0

for all h ∈ X , and its Fréchet differential is denoted by ∂ϕ(x0,h), namely, ∂ϕ(x0,h) =
fx0(h)
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Definition 2. we call Γ locally ε-maximal at x0, if for any ε > 0, there exists a positive
real number δ , such that for any x ∈ U(x0,δ ) and ϕ ∈ M(Γ,x0) there exists a φ ∈ M(Γ,x)
such that ∣φ(x)−ϕ(x)∣< ε∣∣x− x0∣∣.

Γ locally ε-maximal at x0 implies that there exists U(x0,δ ), if x ∈ U(x0,δ ), we can
find a φ ∈ M(Γ,x), such that

lim
∣∣x−x0∣∣→0

∣φ(x)−ϕ(x)∣
∣∣x− x0∣∣

= 0.

Definition 3. Assume x0,h ∈ X , ϕ0 is called to be Gateaux derivable at x0 if the limit

ϕ ′
0(x0,h) = lim

α→0

ϕ0(x0 +αh)−ϕ0(x0)

α

exists for h ∈ X , and ϕ ′
0(x0,h) is called to be Gateaux derivative at x0 with increment h.

It is obvious to get Lemma1 and 2.

Lemma 1. Assume h ∈ X, and Γ be locally ε-maximal at x0, if there exists a ϕ0 ∈
M(Γ,x0) with Fréchet differential at x0, then Γ(⋅) is also Fréchet differentiable at x0 and
∂Γ(x0,h) = ∂ϕ(x0,h).

Lemma 2. Assume h ∈ X, and Γ be locally ε-maximal at x0, if there exists a ϕ0 ∈ M(Γ,x0)

which is Gateaux derivable at x0 with increment h , then Γ(⋅) is also Gateaux derivable
at x0 with increment h and Γ′(x0,h) = ϕ ′

0(x0,h).

It is commonsense that the concept of fréchet differential is stronger than that of the
Gateaux, namely if ∂ϕ(x0,h) exists, then ϕ ′(x0,h) is necessary to exist.

Theorem 3. Assume Γ be locally ε-maximal at g0 and there exists a ϕ0 ∈ M(Γ,g0) with
Fréchet differential at g0, then g0 ∈ P(Γ,G) if and only if ∂ϕ0(g0,g−g0)≥ 0 for any g ∈ G.

Proof. Assume g0 ∈ P(Γ,G), then Γ(g) ≥ Γ(g0). By the assumption that Γ is locally ε-
maximal at g0 and there exists a ϕ0 ∈ M(Γ,g0) with Fréchet differential at g0 and using
lemma 1, we have, for arbitrary ε > 0, when ∥g−g0∥< δ , there exist δ > 0 such that

∂ϕ0(g0,g−g0)− ε∥g−g0∥ ≤ Γ(g)−Γ(g0)≤ ∂ϕ0(g0,g−g0)+ ε∥g−g0∥, (1)

which implies ∂ϕ0(g0,g−g0)≥ 0.

On the contrary, assume that there exists a ϕ0 ∈ M(Γ,g0) satisfying

∂ϕ0(g0,g−g0)≥ 0.

When ∂ϕ0(g0,g−g0) = 0, we can obtain Γ(g) = Γ(g0) for all g ∈ G by using the inequal-
ity (1). If ∂ϕ0(g0,g−g0)> 0, there exists a ε > 0 such that ∂ϕ0(g0,g−g0)≥ ε∥g−g0∥,
which implies that

Γ(g)−Γ(g0)≥ ∂ϕ0(g0,g−g0)− ε∥g−g0∥ ≥ 0

as the result of the Fréchet differentiable of ϕ0 at g0.
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Definition 4. We say that g0 is a sun-point (see [14]) of Γ in G , if g0 ∈ P(Γ,G) implies
g0 ∈ P(Γ,G̃g0 )

, where P(Γ,G̃g0 )
is the optimal solution set of optimization problem (Γ, G̃g0).

If every point g ∈ G is a sun-point of Γ , we refer G to be a sun-set of Γ.

The notion of sun-point plays important role in nonlinear best approximation, which
has been collected in a book [15].

Theorem 4. Assume G be a sun-set of Γ and Γ locally ε-maximal at g0 and ϕ0 ∈ M(Γ,g0)

with Gateaux derivative at g0 with increase g− g0, where g ∈ G, then g0 ∈ P(Γ,G) if and
only if ϕ ′

0(g0,g−g0)≥ 0 for all g ∈ G.

Proof. Assume Γ be locally ε-maximal at g0 and there exists a ϕ0 ∈ M(Γ,g0) with Gateaux
derivative at g0 with increase g−g0. By using lemma 2, we get

ϕ ′
0(g0,g−g0) = lim

t→0+

ϕ0(g0 + t(g−g0))−ϕ0(g0)

t
,

which implies

ϕ ′
0(g0,g−g0) = lim

t→0+

Γ(g0 + t(g−g0))−Γ(g0)

t
(2)

By the assumption that G is a sun-set of Γ and g0 ∈ P(Γ,G), we have ϕ ′
0(g0,g− g0) ≥ 0

from the equality (2). This is end of the proof of necessity of the theorem.

Now we prove the sufficiency of the theorem. Function γ(t) = (Γ(g0 + t(g− g0))−
Γ(g0))/t is an increasing function on (0,1][17], consequently we get γ(1)≥ limt→0+ γ(t),
namely

Γ(g)−Γ(g0)≥ lim
t→0+

Γ(g0 + t(g−g0))−Γ(g0)

t
= ϕ0

′(g0,g−g0)≥ 0,

by ϕ ′
0(g0,g−g0)≥ 0, where ϕ0 ∈ M(Γ,g0), which implies that g0 ∈ P(Γ,G).

3 Generalized Saddle Point
Let X be a Banach space, H̃ be a set of all the real-valued and convex functions on X .

Now we define a functional Ψ : (H̃,X)→ R, that is

Ψ(ϕ ,x) = ϕ(x), ∀(ϕ ,x) ∈ (H̃,X).

Let H be a subset of H̃, and G be the subset of X , we also define

Γ(x) = sup
ϕ∈H

ϕ(x) = sup
ϕ∈H

Ψ(ϕ ,x),

then the optimization problem (Γ,G) changes to be

(Γ,G) : inf
g∈G

Γ(g) = inf
g∈G

sup
ϕ∈H

Ψ(ϕ ,g).
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Definition 5. Let (ϕ0,g0)∈ (H,G), we call (ϕ0,g0) to be generalized saddle point (GSP)
of Ψ in (H,G), if it satisfies Ψ(ϕ ,g0)≤ Ψ(ϕ0,g0)≤ Ψ(ϕ0,g), (ϕ ,g) ∈ (H,G).

The concept of GSP had been introduced in [17]. The notion of saddle point is a
fundamental concept in many areas of science and economics. A classical instance is the
famous saddle point theorem for a zero-sum matrix game due to J. Von Neumann and O.
Morgenstern [1].

Theorem 5. Assume G be a sun-set of Γ and Γ locally ε-maximal at g0 and ϕ0 ∈ M(Γ,g0)

with Gateaux derivative at g0 with increase g−g0, where g∈G, then following statements
are equivalent,

(1) g0 ∈ P(Γ,G);
(2) (ϕ0,g0) is GSP of Ψ in (H,G);
(3) ϕ0

′(ḡ,g−g0)≥ 0, g ∈ G;
(4) Γ′(g0,g−g0)≥ 0.

Proof. (2) ⇒ (3). Assume (ϕ0,g0) is a GSP of Ψ in (H,G), we have Ψ(ϕ ,g0) ≤
Ψ(ϕ0,g0) ≤ Ψ(ϕ0,g), namely ϕ(g0) ≤ ϕ0(g0) ≤ ϕ0(g). Therefor, by the inequality and
convexity of ϕ0, we can get

ϕ ′
0(g0,g−g0) = lim

α→0+

ϕ0(g0 +α(g−g0))−ϕ0(g0)

α

≥ lim
α→0+

(1−α)ϕ0(g0)+αϕ0(g)−ϕ0(g0)

α

= lim
α→0+

α[ϕ0(g)−ϕ0(g0)]

α
= ϕ0(g)−ϕ0(g0)≥ 0.

(3) ⇒ (2). Assume that ϕ ′
0(g0,g − g0) ≥ 0. Let γ(α) = ϕ0(g0+α(g−g0))−ϕ0(g0)

α , where
α ∈ (0,1]. When ϕ is a convex function, It had been proved that γ(α) is an increasing
function on (0,1] [17]. So we have γ(1) ≥ lim

α→0+
γ(α), which implies ϕ0(g) ≥ ϕ0(g0).

Furthermore, ϕ(g0)≤ sup
ϕ∈H

ϕ(g0) = ϕ0(g0), because of ϕ0 ∈ M(Γ,g0). So we get

Ψ(ϕ ,g0)≤ Ψ(ϕ0,g0)≤ Ψ(ϕ0,g), (ϕ ,g) ∈ (H,G).

(1)⇔ (3) and (3)⇔ (4) can be obtained by theorem 4 and Lemma 2 respectively.

Now we can get the relationship between GSP and Fréchet differentiable in the fol-
lowing by means of Theorem 5.

Theorem 6. Let ϕ0 ∈ M(Γ,g0) be Fréchet differentiable at g0, then (ϕ0,g0)) is a GSP of
Ψ in (H,G), if and only if ∂ϕ0(g0,g−g0)≥ 0, g ∈ G.

From the proofs of the above theorems, we realize that the optimal solution of (Γ,G)
is equivalent to Fréchet differentiable , but not true to Gateaux derivable without G being
a sunset of Γ, which displays that Fréchet differentiable is stronger than that of Gateaux
derivable again.

368 The 8th International Symposium on Operations Research and Its Applications



4 Application in Best Simultaneous Approximation
Let X be a Banach space, X∗ be its dual space, and ∥ ⋅ ∥, ∥ ⋅ ∥X∗ be their norms of

the space X and X∗ respectively. B∗ denotes the unit sphere of X∗, which is B∗ = { f :
∣∣ f ∣∣X∗ = 1, f ∈ X∗}. Let F be a bounded, closed and convex subset of X , and G also be
a arbitrary subset of X , we define d(F,G) = inf

g∈G
sup
x∈F

∣∣x−g∣∣. We expect, in approximation

theorem, to find a g0 ∈ G such that

sup
x∈F

∣∣x−g0∣∣= inf
g∈G

sup
x∈F

∣∣x−g∣∣, (1)

then g0 is called best simultaneous approximation of F by the elements of the set G, all
of which denote P(F,G), namely, P(F.G) = {g0 : sup

x∈F
∣∣x−g0∣∣ = d(F,G)}.The best approx-

imation of a bounded set, namely, relative Chebyshev center, were discussed in many
literatures [4, 7, 12, 13, 16].

Given ( f ,x) ∈ (B∗,F), We define ϕ( f ,x)(y) = ∣ f (x− y)∣,y ∈ X , where (B∗,F) is the
Cartesian product set of B∗ and F , which is equipped with a product topology. It is
evident to get that ϕ( f ,x)(⋅) is a nonnegative convex function on X . Let

H(B∗,F) = {ϕ( f ,x) : ϕ( f ,x)(y) = ∣ f (x− y)∣, ( f ,x) ∈ (B∗,F)},

Γ(B∗,F)(y) = sup
ϕ( f ,x)∈H(B∗,F)

ϕ( f ,x)(y), y ∈ X ,

and
Ψ(ϕ( f ,x),y) = ϕ( f ,x)(y) = ∣ f (x− y)∣.

It is obvious to get that Γ(B∗,F)(y) is a continuous function, Furthermore, we have

Γ(B∗,F)(y) = sup
ϕ( f ,x)∈H(B∗,F)

Ψ(ϕ( f ,x),y) = sup
( f ,x)∈(B∗,F)

∣ f (x− y)∣. (2)

We can obtain following lemma obviously.

Lemma 7. For any y ∈ X, sup
( f ,x)∈(B∗,F)

∣ f (x− y)∣= sup
x∈F

∣∣x− y∣∣.

In fact, by the definition of norm [8] and lemma 7, we can get following equalities

d(F,G) = inf
g∈G

sup
x∈F

∣∣x−g∣∣X = inf
g∈G

sup
( f ,x)∈(B∗,F)

∣ f (x−g)∣

= inf
g∈G

Γ(B∗,F)(g) = sup
ϕ( f ,x)∈H(B∗,F)

Ψ(ϕ( f ,x),g),

which implies that the problem of best approximation of the set F by the elements of the
set G is equivalent to the convex optimization of (Γ(B∗,F),G).

For proving the following lemma, it is necessary to know that when X is a Banach
space and M a convex subset of X , then M is a strongly closed set if and only if M is
weekly closed [11].
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Lemma 8. Let F be a closed, bounded and convex subset of X, then M(Γ(B∗ ,F),y) is not
empty.

By linearity of the function ϕ( f ∗0 ,x
∗
0)

, it is easy to have following lemma.

Lemma 9. let ϕ( f ∗0 ,x
∗
0)
∈ M(Γ(B∗ ,F),y0), then ϕ( f ∗0 ,x

∗
0)

is Fréchet differentiable and Gateaux
derivable at y0 and ϕ ′

( f ∗0 ,x
∗
0)
(y0,h) = ∂ϕ( f ∗0 ,x

∗
0)
(y0,h) =− f ∗0 (h), where h ∈ X.

Lemma 10. [11] X is a smooth space ⇔ X is Gateaux derivable space.

Now we give following theorem about characteristic of best simultaneous approxima-
tion of F by the element of G.

Theorem 11. Let X be smooth space, F ⊂ X closed, bounded and convex subset of X,
and G also a subset of X, g0 ∈ G, then the following statement are equivalent,

(1) g0 ∈ P(F,G)

(2) there exists ( f ∗0 ,x
∗
0) ∈ M(Γ(B∗ ,F),g0) such that f ∗0 (g0 −g)≥ 0, ∀g ∈ G

(3) there exists ( f ∗0 ,x
∗
0)∈M(Γ(B∗,F),g0) such that (ϕ( f ∗0 ,x

∗
0)
,g0) be the GSP of Ψ in (H(B∗,F),G).

Proof. We only need prove that function Γ(B∗,F)(⋅) is locally ε-maximal at g0, then the
proof of these equivalences are easy to get by theorem 5.

Using lemma 8, we have that there exist a ( f ∗0 ,x
∗
0) ∈ M(Γ(B∗ ,F),g0), such that

Γ(B∗,F)(g0) = f ∗0 (x
∗
0 −g0) = ∣∣x∗0 −g0∣∣= sup

x∈F
∣∣x−g0∣∣.

By the assumption that X is a smooth space, we can know that f ∗0 is the unique supporting
functional of x∗0 −g0, therefore

lim
λ→0

=
∣∣x∗0 − (g0 +λh)∣∣− ∣∣x∗0 −g0∣∣

λ ∣∣h∣∣ =− f ∗0 (h),

by using lemma 9 and 10, where ∣∣h∣∣= 1. This equalities implies that

f ∗λ (x
∗
0 − (g0 +λh) = f ∗0 (x

∗
0 −g0)+λ (− f ∗0 (h))+O(∣∣λh∣∣), (3)

where f ∗λ , f ∗0 ∈ B∗ satisfying f ∗λ (x
∗
0−(g0+λh)) = ∣∣x∗0−(g0+λh)∣∣, f ∗0 (x

∗
0−g0) = ∣∣x∗0−

g0∣∣ respectively. Moreover, we have f ∗0 (x
∗
0 − (g0 +λh) = f ∗0 (x

∗
0 −g0)+λ (− f ∗0 (h)). And

using equalities (3), hence we can get f ∗λ (x
∗
0−(g0+λh)− f ∗0 (x

∗
0−(g0+λh) = O(∣∣λh∣∣),

which implies that for any ε > 0, there exists δ > 0 and ( f ∗λ ,x
∗
0)∈ M(Γ(B∗ ,F),(g0+λh)), when

∣∣λh∣∣< δ , such that

∣ f ∗λ (x∗0 − (g0 +λh)− f ∗0 (x
∗
0 −g0)∣

∣∣λh∣∣ < ε,

that is to say Γ(B∗,F) is locally ε-maximal at g0.
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