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Abstract 

This paper introduces a new hybrid algorithmic approach 
based on discrete Particle Swarm Optimization (PSO) and 
optimal splitting procedure for solving one of the most 
popular supply chain management problems, the Vehicle 
Routing Problem (VRP). The VRP is a well known NP-
hard problem in which a vehicle with finite capacity 
leaves from the depot with full load and has to serve a set 
of customers whose demands are known only when the 
vehicle arrives to them. Experiment results show that the 
proposed algorithm is an efficient algorithm in solving 
VRP. This paper also shows that the proposed algorithm 
algorithm can find the feasible solution effectively and 
almost can find the global optimal solution for small in-
stance. For larger instances, if the size of populations in 
the proposed algorithm increases, the possibility of find-
ing the global optimal solution will increase. 
 

1 Introduction 

In the fields of transportation, distribution, and logistics, 
the Vehicle Routing Problem (VRP) or the Capacitated 
Vehicle Routing problem (CVRP) arises naturally as a 
central problem in which vehicles based on the central 
depot are required to visit geographically dispersed cus-
tomers exactly once in order to fulfill known customer 
demands. The VRP is often defined on a undirected net-
work G = (V;E) with a node set V and an edge set E. Node 
0 is a depot and each other node i > 0 represents a cus-
tomer and each edge has a non-negative travel cost. The 
reader can find more detailed descriptions of the algo-
rithms proposed for the CVRP and its variants in the sur-
vey papers [1-8] and in the books [9-11]. 

Due to the fact that the vehicle routing problem is a 
well-known integer programming problem which falls 
into the category of NP-Hard problems, the instances with 
a large number of customers cannot be solved in optimali-
ty within reasonable time. For this reason, a number of 
approximation techniques (metaheuristic and evolutionary 
algorithms) were proposed for the solution of the problem. 
In this paper, the Vehicle Routing Problem is solved using 
one of these algorithms, the Particle Swarm Optimization 
algorithm. Particle Swarm Optimization (PSO) was origi-
nally proposed by Kennedy and Eberhart [12-14] to simu-

late the social behavior of social organisms such as bird 
flocking and fish schooling. Its mechanism enhances and 
adapts to the global and local exploration and this method 
has been identified as very useful in many problems. Most 
applications of PSO have concentrated on the optimization 
in continuous space while some work has been done to the 
discrete optimization [13,15]. Recent complete surveys for 
the Particle Swarm Optimization can be found in [16-19].  

The most commonly used techniques for solving VRP 
are heuristics and metaheuristics  because of the NP-
Hardness of the problem when the number of cities is 
large. There exists 2-stage algorithm, Cluster-First-Route-
Second Algorithms, and Route-First-Cluster-Second Al-
gorithms in literature. Route-First-Cluster-Second meth-
ods construct in a first phase a giant TSP tour, disregard-
ing side constraints, and decompose this tour into feasible 
vehicle routes in a second phase. This idea applies to 
problems with a free number of vehicles. The goal of this 
paper is to integrate and implement discrete PSO  algo-
rithm  with  Prins’ mtehod [20] to handle VRP since there 
has little research on computational experience showing 
that Route-First-Cluster-Second heuristics are competitive 
with other approaches.  

2 Methodology 

2.1 General description of PSO 
Particle Swarm Optimization (PSO) is a population based 
swarm intelligence algorithm that simulates the social 
behavior of social organisms by using the physical move-
ments of the individuals in the swarm. In PSO algorithm, 
initially a set of particles is created randomly where each 
particle corresponds to a possible solution. Each particle 
has a position in the space of solutions and moves with a 
given velocity. The position of each particle is represented 
by a p-dimensional vector in problem space 

1 2  ( ,  ,  . . .,  ),  1,  2,  . . .,  i i i ipx x x x i N= = ( N  is the population 
size and p  is the number of the vector’s dimension), and 
its performance is evaluated on the predefined fitness 
function ( ( )ijf x ). The velocity ( ijv ) represents the changes 
that will be made to move the particle from one position 
to another. Where the particle will move depends on the 
dynamic interaction of its own experience and the experi-
ence of the whole swarm. There are three possible direc-
tions that a particle can follow: to follow its own path, to 
move towards the best position it had during the iterations 
( ijpbest ) or to move to the best particle’s position ( gbestj ). 
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In classical PSO algorithm, the position of a particle 
changes using the following equation: 

1 1 2 2( 1) ( ) ( ( )) ( ( ))
(1)

( 1) ( ) ( 1)
ij ij ij ij j ij

ij ij ij

v t wv t c rand pbest x t c rand gbest x t
x t x t v t

+ = + − + −
 + = + +
where t is the iterations’ counter. where c1 and c2 are the 
acceleration coefficients, rand1 and rand2 are two random 
variables in the interval [0, 1] and w is inertia weight. The 
acceleration coefficients c1 and c2 control how far a parti-
cle will move in a single iteration. Low values allow parti-
cles to roam far from target regions before being tugged 
back, while high values result in abrupt movement to-
wards, or past, target regions [12]. A particle’s best posi-
tion ( ijpbest ) in a swarm is calculated from the equation: 

( 1), ( ( 1)) ( ( ))
,

ij ij ij
ij

ij

x t f x t f x t
pbest

pbest otherwise
+ + <

= 


 

The optimal position of the whole swarm in the VRP at 
time t  is calculated by the equation: 

1 2min{ ( ),  ( ),. . . ,  ( )}j j j Njgbest f pbest f pbest f pbest= . 
 The search mechanism of the PSO is demonstrated in 
Figure 1. 
 

 
Figure 1. The search mechanism of the particle swarm 
optimization. 

2.2 Solution representation 
One of the key issues in designing a successful PSO for 
the Vehicle Routing Problem is to find a suitable mapping 
between Vehicle Routing Problem with solutions and par-
ticles in PSO. Each particle is recorded via the path repre-
sentation of the tour without trip delimiters, that is, via the 
specific sequence of the nodes. It can be interpreted as the 
order in which a vehicle must visit all customers, assum-
ing the same vehicle performs all trips in turn. This simple 
encoding is appealing because there obviously exists one 
optimal sequence. A tour may be broken into severaldif-
ferent routes. For example, a tour with 8 customers, S=(1, 
2, 3, 4, 5, 6, 7, 8) may be broken into R1=(1,2), R2=(3, 4, 
5), R3=(6,7,8) or R1=(1,2, 3), R2=(4,5,6)and 
R3=(7,8),etc.. Christian Prins [20] proposed an optimal 
splitting procedure to get the best solution (among all the 
possible routes) respecting to a given tour. We will review 
the main idea of this splitting procedure in Section 2.3 and 
discuss our implementation in Section 2.4. 

2.3 Calculation of the fitness function. 
Because a tour can be split into many different routes, 
Prins [20] proposed a splitting procedure which can find 

an optimal splitting i.e a trip delimiter so that the total cost 
is minimized. The main idea can be described as follows. 
Without loss of generality, let   (1, 2,3, , )S n=   be a given 
tour. Consider an auxiliary graph ( , ) H V E= where 

{0,1,2, , }V n=  . An arc ( , )i j E∈  if 
1

0, 1 , 1 ,01

1

( )

. .

j
ij i k k k j jk i

j
kk i

E c d c d c

s t q Q

−

+ += +

= +

= + + + +

≤

∑
∑

 

Then ijE  is the total travel cost(time) for the route 

( 1,  2, ,  )i i j+ +  . An optimal split for S corresponds to 
shortest path P from vertex 0 to vertex n in H. The follow-
ing example (Prins, [20]) demonstrates the construction. 
The first graph of Fig. 1 shows a sequence S=(a, b, c, d, e). 
The number associates with each edge is the travel time. 
Let us assume the service time (delivery time) is 0 and the 
demands are 5, 4, 4, 2 and 7, respectively. The capacity of 
the vehicle is 10. Then the auxiliary graph H is the second 
graph in Fig. 1. The edge in H with weight 55 corresponds 
to the travel time of the trip (0, a, b, 0). The weight asso-
ciated with the other edges are similarly defined. The 
shortest path from 0 to e is (0, b, c, e) with minimal total 
travel time 205. The last graph gives the optimal result 
with three trips. 
   The auxiliary graph helps us understand the idea how to 
split a given tour S into optimal trips. But in practice, we 
do not have to construct such graph H. It can be done by a 
labeling algorithm and a splitting procedure [20]. Let S = 
(1, 2,…, n) be a given tour. Two labels Vj and Pj for each 
vertex j in S are computed. Vj is the cost of the shortest 
path from node 0 to node j in H, and Pj is the predecessor 
of j on this path. The minimal cost is given at the end by 
Vn. For any given i, note that the increment of j stops 
when Q are exceeded. The labeling algorithm can be refer 
to [20]. 
 

 
Figure 2. An example of  splitting procedure by Prins[20].  
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2.4 Discrete PSO by Clerc[21] 
In this paper, we use the Clerc method to solve our vrp 
problem. Let us consider a position like 

1 2  ( ,  ,  . . .,  ),  1,  2,  . . .,  i i i ipx x x x i N= = . 
(1) Velocity is defined as an operator v which, when ap-
plied to a position during one time step, gives another 
position. So, here, it is a permutation of N elements, that is 
to say a list of transpositions.The length of this list is |v| . 
A velocity is then defined by | |

1(( , )), v
k kv i j k= ↑  which means 

exchange numbers 1 1( , )i j , then numbers 2 2( , )i j , etc. and at 
last numbers | | | |( , )v vi j . A null velocity is a velocity equiva-
lent to ∅, the empty list. 
(2) Opposite of a velocity is defined by  

| | | |
1 | | 1 | 1 1(( , )), (( , )),v v

k k v k v kv i j k i j k− + − +¬ = ↓ = ↑ .  
It means to do the same transpositions as in v, but in 

reverse order . 
(3) Move (addition):  position plus velocity 
Let x be a position and v a velocity. The position x'=x+v 
is found by applying the first transposition of v to p, then 
the second one to the result etc. 
(4) Substraction:  position minus position 
Let x1 and x2 be two positions. The difference x2-x1 is de-
fined as the velocity v, found by the algorithm as follow 
Figure 3, so that applying v to x1 gives x2 . 
 

 
Figure 3. Algorithm flow of  Substraction position minus 
position. 

For example, 1 2(3, 2, 4,1,5), (2, 4,1,5,3)x x= = , we calculate 
the operator Substraction position minus position as fol-
low Figure 4. 
 

 

Figure 4. Illustrated example for Substraction position 
minus position 

(5) Addition: velocity  plus  velocity 
Let v1 and v2 be two velocities. In order to compute v1  ⊕v2  
we consider the list of transpositions which contains first 
the ones of v1, followed by the ones of v2 . Optionnaly, we 
"contract" it to obtain a smaller equivalent velocity. In 
particular, this operation is defined so that v⊕¬v = ∅.  
(6) Multiplication : coefficient times velocity  
Let c be a real coefficient and v be a velocity. There are 
different cases, depending on the value of c. 
(i) Case c = 0 
We have cv = ∅. 
(ii) Case c ∈(0,1) 
We just "truncate" v. Let cv be the greatest integer smaller 
than or equal to c|v| . So we define 

|| ||
1(( , )), c v

k kcv i j k= ↑  
(iii) Case c>1 
It means we have c=k+c', k∈N*,c'∈(0,1). So we define 

 

'
k times

cv v v v c v= ⊕ ⊕ ⊕ ⊕

 

(iv) Case c < 0 
By writing cv=(-c)¬v , we just have to consider one of the 
previous cases. 
Thus we can now rewrite Equ.1 as follow 

1 1 2 2( 1) ( ) ( ( )) ( ( ))

( 1) ( ) ( 1)
ij ij ij ij j ij

ij ij ij

v t wv t c rand pbest x t c rand gbest x t
x t x t v t

+ = ⊕ − ⊕ −
 + = + +
    

 
Figure 5. Scheme of the propose PSO algorithm. 

 
From the  definition of velocity  plus  velocity, we can find 
out the list of transpositions will be huge when after many 
step updates. This will make the PSO computation  slowly. 
To conquer this difficulty, we retart the computation of 

Step1: i=0; 
Step2: if i<L, go to step4 if ith elements of x1 equal to 
that of x2; 
Step3:if unequal, make the two element as a ex-
change number and take a 2-opt to the element of x2; 
Step4:  i=i+1,go to step2. 

1.Genate an initial population of stucture solutions;  
For each particle i=1, ..., S do: 

1)Initialize the particle's position with a randperm 
(the command can get the tour  we wanted). 
2)Evaluate fitness of each individual in the popula-
tion; 
3)Initialize the particle's best known position to its 
initial position: pi ← xi 
4)If (f(pi)< f(g)) update the swarm's best known po-
sition: g ← pi 

2.Until a termination criterion is met (e.g. number of 
iterations performed, or a solution with adequate objec-
tive function value is found), repeat: 
For each particle i = 1, ..., S do: 
For each dimension d = 1, ..., n do: 
Pick random numbers: rand1, rand2 ~ U(0,1) 
Update the particle's velocity  
Update the particle's position 
If (f(xi) < f(pi)) do: 
Update the particle's best known position 
If (f(pi) < f(g))  
Update the swarm's best known position 
           If  mod(i,20)=0 
                Restart the velocities of the pariticles 
Now g holds the best found solution. 
Until stopping criterion is satisfied 
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PSO based on the history information. Thus, the scheme 
of our PSO can be summarised as follow  Figure 4. 

3 Results 

The whole algorithmic approach was implemented in 
Matlab R2013a. The parameters of the proposed algorithm 
are selected after thorough testing. A number of different 
alternative values were tested and the ones selected are 
those that gave the best computational results concerning 
both the quality of the solution and the computational time 
needed to achieve this solution. The algorithm was tested 
on two parts. The values of c1 and c2 are, respectively, 
c1=1.4 and c2 =1.4 and the value of w is equal to 1. The 
velocities are initialized with zeros and the velocities are 
reinitialized with zeros after 20 iterations so that computa-
tion is accelerated. The algorithm was tested on a small 
instance and a set of benchmark instances. 

3.1 Test on a small instance 
One distribution center has some vehicles. It must service 
for 8 customers one day. Number 0 represents the depot 
and numbers 1,2,...,8 represent customers. Each vehicle’s 
capacity is 8. We assume that all vehicles start from dis-
tribution center at 0 and must back to the distribution cen-
ter. The demand of each customer, service time are de-
scribed in table 1. The speed of each vehicle is 50 km/h. 
The problem is how to arrange the vehicles and its routes 
so as to minimize the total costs? 

Table 1. This is the table caption for an example table. 

ID 0 1 2 3 4 5 6 7 8 

0 0 40 60 75 90 200 100 160 80 
1 40 0 65 40 100 50 75 110 100 
2 60 65 0 75 100 100 75 75 75 
3 75 40 75 0 100 50 90 90 150 
4 90 100 100 100 0 100 75 75 100 
5 200 50 100 50 100 0 70 90 75 
6 100 75 75 90 75 70 0 70 100 
7 160 110 75 90 75 90 70 0 100 
8 80 100 75 150 100 75 100 100 0 

di 0 1 2 1 2 1 4 2 2 

 
By conducting the proposed PSO algorithm with initial 
population size 50 and maximal generation 100, the opti-
mal solution is assign 2 vehicles and their routes are 0-2-
8-5-3-1-0 and 0-6-7-4-0. The optimal cost is 67.5. The 
first vehicle’s practical capacity of route 0-2-8-5-3-1-0 is 
7. The second vehicle’s practical capacity of route 0-6-7-
4-0 is 8. In order to verify the efficient of the  proposed 
PSO algorithm, we also use Lingo software to find the 
global optimal solution of this problem. The results show 
that the  proposed PSO algorithm can find the same opti-
mal solution as that found by Lingo software, but the run-
ning time of the proposed PSO algorithm is much less 
than that of Lingo software. 

3.2 Test on some benchmark instances 
These benchmark instances have, initially, been proposed 
and used for the Capacitated Vehicle Routing Problem, 
but due to the fact that every variant of the Vehicle Rout-

ing Problem is a generalization of the Capacitated Vehicle 
Routing Problem, these benchmark instances have, also, 
been used in other variants of the Vehicle Routing Prob-
lem. Each instance of the set contains between 16 and 65 
nodes including the depot. The locations of the nodes are 
defined by their Cartesian co-ordinates and the travel cost 
from node i to j is assumed to be the respective Euclidean 
distance. Each instance includes capacity constraints 
without maximum route length restrictions and with zero 
service time. In Table 2, the characteristics of each in-
stance and  the results of the proposed algorithm are pre-
sented. Here we set the initial population size to 200 and 
maximal generation 500, and each instance run 20 times. 
We collected the best result within these 20 times compu-
tations  and listed in last column. From the results we can 
find that our results had big gaps with the optimal solu-
tions. These gaps can be reduced by taking larger popula-
tion size and larger number of iterations, which can  be 
bound to employ huge computations. 

Table 2. Benchmark instances proposed by Christofides 
[22] and results comparisons. 

Instance n Capacity best ours 

A-n32-k5 32 100 784 974 

A-n55-k9 55  100 1073 1423  

A-n60-k9 60  100 1354 1762 

P-n16-k8 16 35 450 603 

P-n22-k2 22 160 216 284 

P-n23-k8 23 40 529 734 

P-n60-k10 65 120 744 953 

 
One of the solution traces of the instance A-n32-k5 is 

shown by Figure 6 which can delegate general properties 
of the propsed PSO on many benchmark instances. We 
can find that during the computation, the speed of finding 
better solutions became slowly as iteration times goes 
away. This bad convergence means that the mechamism 
of searching optimal solution should be improved. 
 

 
Figure 6. One of solution traces of the instance A-n32-k5. 

4 Conclusion 

There are many practical problems that can be represented 
by VRP. Since VRP is an NP-hard problem, it is difficult 
to find the exact solution. It is an important issue to design 
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effectively algorithms for solving the large size VRP 
problem. This paper we combine discrete PSO on tsp by 
clerc [21] and optimal splitting procedure found by Prins 
[20] to solve VRP. Experiment results show that the pro-
posed algorithm is an efficient algorithm in solving VRP. 
This paper shows that the proposed algorithm algorithm 
can find the feasible solution effectively and almost can 
find the global optimal solution for small instance. For 
larger instances, if the size of populations in the proposed 
algorithm increases, the possibility of finding the global 
optimal solution will increase. Since the speed of finding 
better solutions became slowly as iteration times goes 
away for larger instances, our future research will be fo-
cused on  how to improve and to design the mechamism 
of searching optimal solution.We also hope the proposed 
PSO algorithm can be used to solve VRP with time win-
dow. 
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