
SOLVE THE VEHICLE ROUTING PROBLEM VIA A
DISCRETE PARTICLE SWARM OPTIMIZATION

Hong-Wei Liu1

1Information School, Beijing Wuzi University, Beijing 101149, China
ryuhowell@163.com

Keywords: Capacitated vehicle routing problem, particle
swarm optimization, NP-hard problem, optimal splitting
procedure, benchmark instance.

Abstract

This paper introduces a new hybrid algorithmic approach
based on discrete Particle Swarm Optimization (PSO) and
optimal splitting procedure for solving one of the most
popular supply chain management problems, the Vehicle
Routing Problem (VRP). The VRP is a well known NP-
hard problem in which a vehicle with finite capacity
leaves from the depot with full load and has to serve a set
of customers whose demands are known only when the
vehicle arrives to them. Experiment results show that the
proposed algorithm is an efficient algorithm in solving
VRP. This paper also shows that the proposed algorithm
algorithm can find the feasible solution effectively and
almost can find the global optimal solution for small in-
stance. For larger instances, if the size of populations in
the proposed algorithm increases, the possibility of find-
ing the global optimal solution will increase.

1 Introduction

In the fields of transportation, distribution, and logistics,
the Vehicle Routing Problem (VRP) or the Capacitated
Vehicle Routing problem (CVRP) arises naturally as a
central problem in which vehicles based on the central
depot are required to visit geographically dispersed cus-
tomers exactly once in order to fulfill known customer
demands. The VRP is often defined on a undirected net-
work G = (V;E) with a node set V and an edge set E. Node
0 is a depot and each other node i > 0 represents a cus-
tomer and each edge has a non-negative travel cost. The
reader can find more detailed descriptions of the algo-
rithms proposed for the CVRP and its variants in the sur-
vey papers [1-8] and in the books [9-11].

Due to the fact that the vehicle routing problem is a
well-known integer programming problem which falls
into the category of NP-Hard problems, the instances with
a large number of customers cannot be solved in optimali-
ty within reasonable time. For this reason, a number of
approximation techniques (metaheuristic and evolutionary
algorithms) were proposed for the solution of the problem.
In this paper, the Vehicle Routing Problem is solved using
one of these algorithms, the Particle Swarm Optimization
algorithm. Particle Swarm Optimization (PSO) was origi-
nally proposed by Kennedy and Eberhart [12-14] to simu-

late the social behavior of social organisms such as bird
flocking and fish schooling. Its mechanism enhances and
adapts to the global and local exploration and this method
has been identified as very useful in many problems. Most
applications of PSO have concentrated on the optimization
in continuous space while some work has been done to the
discrete optimization [13,15]. Recent complete surveys for
the Particle Swarm Optimization can be found in [16-19].

The most commonly used techniques for solving VRP
are heuristics and metaheuristics because of the NP-
Hardness of the problem when the number of cities is
large. There exists 2-stage algorithm, Cluster-First-Route-
Second Algorithms, and Route-First-Cluster-Second Al-
gorithms in literature. Route-First-Cluster-Second meth-
ods construct in a first phase a giant TSP tour, disregard-
ing side constraints, and decompose this tour into feasible
vehicle routes in a second phase. This idea applies to
problems with a free number of vehicles. The goal of this
paper is to integrate and implement discrete PSO algo-
rithm with Prins’ mtehod [20] to handle VRP since there
has little research on computational experience showing
that Route-First-Cluster-Second heuristics are competitive
with other approaches.

2 Methodology

2.1 General description of PSO
Particle Swarm Optimization (PSO) is a population based
swarm intelligence algorithm that simulates the social
behavior of social organisms by using the physical move-
ments of the individuals in the swarm. In PSO algorithm,
initially a set of particles is created randomly where each
particle corresponds to a possible solution. Each particle
has a position in the space of solutions and moves with a
given velocity. The position of each particle is represented
by a p-dimensional vector in problem space

1 2 (, , . . .,), 1, 2, . . ., i i i ipx x x x i N= = (N is the population
size and p is the number of the vector’s dimension), and
its performance is evaluated on the predefined fitness
function (()ijf x). The velocity (ijv) represents the changes
that will be made to move the particle from one position
to another. Where the particle will move depends on the
dynamic interaction of its own experience and the experi-
ence of the whole swarm. There are three possible direc-
tions that a particle can follow: to follow its own path, to
move towards the best position it had during the iterations
(ijpbest) or to move to the best particle’s position (gbestj).

2015 ISORA 978-1-78561-086-8 ©2015 IET 205 Luoyang, China, August 21–24, 2015

In classical PSO algorithm, the position of a particle
changes using the following equation:

1 1 2 2(1) () (()) (())
(1)

(1) () (1)
ij ij ij ij j ij

ij ij ij

v t wv t c rand pbest x t c rand gbest x t
x t x t v t

+ = + − + −
 + = + +
where t is the iterations’ counter. where c1 and c2 are the
acceleration coefficients, rand1 and rand2 are two random
variables in the interval [0, 1] and w is inertia weight. The
acceleration coefficients c1 and c2 control how far a parti-
cle will move in a single iteration. Low values allow parti-
cles to roam far from target regions before being tugged
back, while high values result in abrupt movement to-
wards, or past, target regions [12]. A particle’s best posi-
tion (ijpbest) in a swarm is calculated from the equation:

(1), ((1)) (())
,

ij ij ij
ij

ij

x t f x t f x t
pbest

pbest otherwise
+ + <

= 


The optimal position of the whole swarm in the VRP at
time t is calculated by the equation:

1 2min{ (), (),. . . , ()}j j j Njgbest f pbest f pbest f pbest= .
 The search mechanism of the PSO is demonstrated in
Figure 1.

Figure 1. The search mechanism of the particle swarm
optimization.

2.2 Solution representation
One of the key issues in designing a successful PSO for
the Vehicle Routing Problem is to find a suitable mapping
between Vehicle Routing Problem with solutions and par-
ticles in PSO. Each particle is recorded via the path repre-
sentation of the tour without trip delimiters, that is, via the
specific sequence of the nodes. It can be interpreted as the
order in which a vehicle must visit all customers, assum-
ing the same vehicle performs all trips in turn. This simple
encoding is appealing because there obviously exists one
optimal sequence. A tour may be broken into severaldif-
ferent routes. For example, a tour with 8 customers, S=(1,
2, 3, 4, 5, 6, 7, 8) may be broken into R1=(1,2), R2=(3, 4,
5), R3=(6,7,8) or R1=(1,2, 3), R2=(4,5,6)and
R3=(7,8),etc.. Christian Prins [20] proposed an optimal
splitting procedure to get the best solution (among all the
possible routes) respecting to a given tour. We will review
the main idea of this splitting procedure in Section 2.3 and
discuss our implementation in Section 2.4.

2.3 Calculation of the fitness function.
Because a tour can be split into many different routes,
Prins [20] proposed a splitting procedure which can find

an optimal splitting i.e a trip delimiter so that the total cost
is minimized. The main idea can be described as follows.
Without loss of generality, let (1, 2,3, ,)S n=  be a given
tour. Consider an auxiliary graph (,) H V E= where

{0,1,2, , }V n=  . An arc (,)i j E∈ if
1

0, 1 , 1 ,01

1

()

. .

j
ij i k k k j jk i

j
kk i

E c d c d c

s t q Q

−

+ += +

= +

= + + + +

≤

∑
∑

Then ijE is the total travel cost(time) for the route

(1, 2, ,)i i j+ +  . An optimal split for S corresponds to
shortest path P from vertex 0 to vertex n in H. The follow-
ing example (Prins, [20]) demonstrates the construction.
The first graph of Fig. 1 shows a sequence S=(a, b, c, d, e).
The number associates with each edge is the travel time.
Let us assume the service time (delivery time) is 0 and the
demands are 5, 4, 4, 2 and 7, respectively. The capacity of
the vehicle is 10. Then the auxiliary graph H is the second
graph in Fig. 1. The edge in H with weight 55 corresponds
to the travel time of the trip (0, a, b, 0). The weight asso-
ciated with the other edges are similarly defined. The
shortest path from 0 to e is (0, b, c, e) with minimal total
travel time 205. The last graph gives the optimal result
with three trips.
 The auxiliary graph helps us understand the idea how to
split a given tour S into optimal trips. But in practice, we
do not have to construct such graph H. It can be done by a
labeling algorithm and a splitting procedure [20]. Let S =
(1, 2,…, n) be a given tour. Two labels Vj and Pj for each
vertex j in S are computed. Vj is the cost of the shortest
path from node 0 to node j in H, and Pj is the predecessor
of j on this path. The minimal cost is given at the end by
Vn. For any given i, note that the increment of j stops
when Q are exceeded. The labeling algorithm can be refer
to [20].

Figure 2. An example of splitting procedure by Prins[20].

2015 ISORA 978-1-78561-086-8 ©2015 IET 206 Luoyang, China, August 21–24, 2015

2.4 Discrete PSO by Clerc[21]
In this paper, we use the Clerc method to solve our vrp
problem. Let us consider a position like

1 2 (, , . . .,), 1, 2, . . ., i i i ipx x x x i N= = .
(1) Velocity is defined as an operator v which, when ap-
plied to a position during one time step, gives another
position. So, here, it is a permutation of N elements, that is
to say a list of transpositions.The length of this list is |v| .
A velocity is then defined by | |

1((,)), v
k kv i j k= ↑ which means

exchange numbers 1 1(,)i j , then numbers 2 2(,)i j , etc. and at
last numbers | | | |(,)v vi j . A null velocity is a velocity equiva-
lent to ∅, the empty list.
(2) Opposite of a velocity is defined by

| | | |
1 | | 1 | 1 1((,)), ((,)),v v

k k v k v kv i j k i j k− + − +¬ = ↓ = ↑ .
It means to do the same transpositions as in v, but in

reverse order .
(3) Move (addition): position plus velocity
Let x be a position and v a velocity. The position x'=x+v
is found by applying the first transposition of v to p, then
the second one to the result etc.
(4) Substraction: position minus position
Let x1 and x2 be two positions. The difference x2-x1 is de-
fined as the velocity v, found by the algorithm as follow
Figure 3, so that applying v to x1 gives x2 .

Figure 3. Algorithm flow of Substraction position minus
position.

For example, 1 2(3, 2, 4,1,5), (2, 4,1,5,3)x x= = , we calculate
the operator Substraction position minus position as fol-
low Figure 4.

Figure 4. Illustrated example for Substraction position
minus position

(5) Addition: velocity plus velocity
Let v1 and v2 be two velocities. In order to compute v1 ⊕v2
we consider the list of transpositions which contains first
the ones of v1, followed by the ones of v2 . Optionnaly, we
"contract" it to obtain a smaller equivalent velocity. In
particular, this operation is defined so that v⊕¬v = ∅.
(6) Multiplication : coefficient times velocity
Let c be a real coefficient and v be a velocity. There are
different cases, depending on the value of c.
(i) Case c = 0
We have cv = ∅.
(ii) Case c ∈(0,1)
We just "truncate" v. Let cv be the greatest integer smaller
than or equal to c|v| . So we define

|| ||
1((,)), c v

k kcv i j k= ↑
(iii) Case c>1
It means we have c=k+c', k∈N*,c'∈(0,1). So we define

'
k times

cv v v v c v= ⊕ ⊕ ⊕ ⊕

(iv) Case c < 0
By writing cv=(-c)¬v , we just have to consider one of the
previous cases.
Thus we can now rewrite Equ.1 as follow

1 1 2 2(1) () (()) (())

(1) () (1)
ij ij ij ij j ij

ij ij ij

v t wv t c rand pbest x t c rand gbest x t
x t x t v t

+ = ⊕ − ⊕ −
 + = + +

Figure 5. Scheme of the propose PSO algorithm.

From the definition of velocity plus velocity, we can find
out the list of transpositions will be huge when after many
step updates. This will make the PSO computation slowly.
To conquer this difficulty, we retart the computation of

Step1: i=0;
Step2: if i<L, go to step4 if ith elements of x1 equal to
that of x2;
Step3:if unequal, make the two element as a ex-
change number and take a 2-opt to the element of x2;
Step4: i=i+1,go to step2.

1.Genate an initial population of stucture solutions;
For each particle i=1, ..., S do:

1)Initialize the particle's position with a randperm
(the command can get the tour we wanted).
2)Evaluate fitness of each individual in the popula-
tion;
3)Initialize the particle's best known position to its
initial position: pi ← xi
4)If (f(pi)< f(g)) update the swarm's best known po-
sition: g ← pi

2.Until a termination criterion is met (e.g. number of
iterations performed, or a solution with adequate objec-
tive function value is found), repeat:
For each particle i = 1, ..., S do:
For each dimension d = 1, ..., n do:
Pick random numbers: rand1, rand2 ~ U(0,1)
Update the particle's velocity
Update the particle's position
If (f(xi) < f(pi)) do:
Update the particle's best known position
If (f(pi) < f(g))
Update the swarm's best known position
 If mod(i,20)=0
 Restart the velocities of the pariticles
Now g holds the best found solution.
Until stopping criterion is satisfied

2015 ISORA 978-1-78561-086-8 ©2015 IET 207 Luoyang, China, August 21–24, 2015

PSO based on the history information. Thus, the scheme
of our PSO can be summarised as follow Figure 4.

3 Results

The whole algorithmic approach was implemented in
Matlab R2013a. The parameters of the proposed algorithm
are selected after thorough testing. A number of different
alternative values were tested and the ones selected are
those that gave the best computational results concerning
both the quality of the solution and the computational time
needed to achieve this solution. The algorithm was tested
on two parts. The values of c1 and c2 are, respectively,
c1=1.4 and c2 =1.4 and the value of w is equal to 1. The
velocities are initialized with zeros and the velocities are
reinitialized with zeros after 20 iterations so that computa-
tion is accelerated. The algorithm was tested on a small
instance and a set of benchmark instances.

3.1 Test on a small instance
One distribution center has some vehicles. It must service
for 8 customers one day. Number 0 represents the depot
and numbers 1,2,...,8 represent customers. Each vehicle’s
capacity is 8. We assume that all vehicles start from dis-
tribution center at 0 and must back to the distribution cen-
ter. The demand of each customer, service time are de-
scribed in table 1. The speed of each vehicle is 50 km/h.
The problem is how to arrange the vehicles and its routes
so as to minimize the total costs?

Table 1. This is the table caption for an example table.

ID 0 1 2 3 4 5 6 7 8

0 0 40 60 75 90 200 100 160 80
1 40 0 65 40 100 50 75 110 100
2 60 65 0 75 100 100 75 75 75
3 75 40 75 0 100 50 90 90 150
4 90 100 100 100 0 100 75 75 100
5 200 50 100 50 100 0 70 90 75
6 100 75 75 90 75 70 0 70 100
7 160 110 75 90 75 90 70 0 100
8 80 100 75 150 100 75 100 100 0

di 0 1 2 1 2 1 4 2 2

By conducting the proposed PSO algorithm with initial
population size 50 and maximal generation 100, the opti-
mal solution is assign 2 vehicles and their routes are 0-2-
8-5-3-1-0 and 0-6-7-4-0. The optimal cost is 67.5. The
first vehicle’s practical capacity of route 0-2-8-5-3-1-0 is
7. The second vehicle’s practical capacity of route 0-6-7-
4-0 is 8. In order to verify the efficient of the proposed
PSO algorithm, we also use Lingo software to find the
global optimal solution of this problem. The results show
that the proposed PSO algorithm can find the same opti-
mal solution as that found by Lingo software, but the run-
ning time of the proposed PSO algorithm is much less
than that of Lingo software.

3.2 Test on some benchmark instances
These benchmark instances have, initially, been proposed
and used for the Capacitated Vehicle Routing Problem,
but due to the fact that every variant of the Vehicle Rout-

ing Problem is a generalization of the Capacitated Vehicle
Routing Problem, these benchmark instances have, also,
been used in other variants of the Vehicle Routing Prob-
lem. Each instance of the set contains between 16 and 65
nodes including the depot. The locations of the nodes are
defined by their Cartesian co-ordinates and the travel cost
from node i to j is assumed to be the respective Euclidean
distance. Each instance includes capacity constraints
without maximum route length restrictions and with zero
service time. In Table 2, the characteristics of each in-
stance and the results of the proposed algorithm are pre-
sented. Here we set the initial population size to 200 and
maximal generation 500, and each instance run 20 times.
We collected the best result within these 20 times compu-
tations and listed in last column. From the results we can
find that our results had big gaps with the optimal solu-
tions. These gaps can be reduced by taking larger popula-
tion size and larger number of iterations, which can be
bound to employ huge computations.

Table 2. Benchmark instances proposed by Christofides
[22] and results comparisons.

Instance n Capacity best ours

A-n32-k5 32 100 784 974

A-n55-k9 55 100 1073 1423

A-n60-k9 60 100 1354 1762

P-n16-k8 16 35 450 603

P-n22-k2 22 160 216 284

P-n23-k8 23 40 529 734

P-n60-k10 65 120 744 953

One of the solution traces of the instance A-n32-k5 is

shown by Figure 6 which can delegate general properties
of the propsed PSO on many benchmark instances. We
can find that during the computation, the speed of finding
better solutions became slowly as iteration times goes
away. This bad convergence means that the mechamism
of searching optimal solution should be improved.

Figure 6. One of solution traces of the instance A-n32-k5.

4 Conclusion

There are many practical problems that can be represented
by VRP. Since VRP is an NP-hard problem, it is difficult
to find the exact solution. It is an important issue to design

2015 ISORA 978-1-78561-086-8 ©2015 IET 208 Luoyang, China, August 21–24, 2015

effectively algorithms for solving the large size VRP
problem. This paper we combine discrete PSO on tsp by
clerc [21] and optimal splitting procedure found by Prins
[20] to solve VRP. Experiment results show that the pro-
posed algorithm is an efficient algorithm in solving VRP.
This paper shows that the proposed algorithm algorithm
can find the feasible solution effectively and almost can
find the global optimal solution for small instance. For
larger instances, if the size of populations in the proposed
algorithm increases, the possibility of finding the global
optimal solution will increase. Since the speed of finding
better solutions became slowly as iteration times goes
away for larger instances, our future research will be fo-
cused on how to improve and to design the mechamism
of searching optimal solution.We also hope the proposed
PSO algorithm can be used to solve VRP with time win-
dow.

Acknowledgments

This work was supported by the Funding Project for Aca-
demic Human Resources Development in Institutions of
Higher Learning Under the Jurisdiction of Beijing Munic-
ipality (CIT&TCD20130327), and Major Research Project
of Beijing Wuzi University.

References

[1] Bodin, L., Golden, B., “Classification in vehicle
routing and scheduling", Networks, 1981, 11, pp.
97-108.

[2] Bodin, L., Golden, B., Assad, A., Ball, M.，“ The
state of the art in the routing and scheduling of vehi-
cles and crews”, Computers and Operations Re-
search ,1983, 10, pp. 63-212.

[3] Fisher, M.L., “Vehicle routing”, in: M.O. Ball, T.L.
Magnanti, C.L. Momma, G.L. Nemhauser (Eds.), in:
Network Routing, Handbooks in Operations Re-
search and Management Science, North Holland,
Amsterdam, 1995, 8, pp. 1-33.

[4] Gendreau, M., Laporte, G., Potvin, J.Y., “Vehicle
routing: modern heuristics”, in: E.H.L. Aarts, J.K.
Lenstra (Eds.), Local Search in Combinatorial Opti-
mization, Wiley, Chichester, 1997, pp. 311-336.

[5] Gendreau, M., Laporte, G., Potvin, J.Y., “Metaheu-
ristics for the capacitated VRP”, in: P. Toth, D. Vigo
(Eds.), The Vehicle Routing Problem, Monographs
on Discrete Mathematics and Applications, Siam,
2002, pp. 129-154.

[6] Laporte, G., Gendreau, M., Potvin, J.Y., Semet, F.,
“Classical and modern heuristics for the vehicle
routing problem”, International Transactions on Op-
erations Research ,2000,7, pp. 285-300.

[7] Laporte, G., Semet, F., “Classical heuristics for the
capacitated VRP”, in: P. Toth, D. Vigo (Eds.), The
Vehicle Routing Problem, Monographs on Discrete
Mathematics and Applications, Siam, 2002, pp. 109-
128.

[8] Marinakis, Y., Migdalas, A., “Heuristic solutions of
vehicle routing problems in supply chain manage-

ment”, in: P.M. Pardalos, A. Migdalas, R. Burkard
(Eds.), Combinatorial and Global Optimization,
World Scientific Publishing Co, 2002, pp. 205-236.

[9] Golden, B.L., Assad, A.A., Vehicle Routing: Meth-
ods and Studies, North Holland, Amsterdam, 1988.

[10] Golden, B.L., Raghavan, S., Wasil, E., “The Vehicle
Routing Problem: Latest Advances and New Chal-
lenges”, Springer LLC, 2008.

[11] Pereira, F.B., Tavares, J., “Bio-inspired Algorithms
for the Vehicle Routing Problem, Studies in Compu-
tational Intelligence”, vol. 161, Springer, Berlin
Heidelberg, 2008.

[12] Kennedy, J., Eberhart, R., “Particle swarm optimiza-
tion”, in: Proceedings of 1995 IEEE International
Conference on Neural Networks, 1995, 4,pp. 1942-
1948.

[13] Kennedy, J. , Eberhart, R., “A discrete binary ver-
sion of the particle swarm algorithm”, in: Proceed-
ings of 1997 IEEE International Conference on Sys-
tems, Man, and Cybernetics, 1997, 5, pp. 4104-4108.

[14] Kennedy, J., Eberhart, R., Shi, Y., “Swarm Intelli-
gence”, Morgan Kaufmann Publisher, San Francisco,
2001.

[15] Shi, Y., Eberhart, R., “A modified particle swarm
optimizer”, in: Proceedings of 1998 IEEE World
Congress on Computational Intelligence, 1998, pp.
69-73.

[16] Banks, A., Vincent, J., Anyakoha, C., “A review of
particle swarm optimization”. Part I: Background
and development, Natural Computing, 2007,6(4),
pp.467-484.

[17] Banks, A., Vincent, J., Anyakoha, C., “A review of
particle swarm optimization”. Part II: Hybridisation,
combinatorial, multicriteria and constrained optimi-
zation, and indicative applications, Natural Compu-
ting, 2008, 7, pp. 109-124.

[18] Clerc, M., “Particle Swarm Optimization”, ISTE Ltd,
London, 2006.

[19] Poli, R., Kennedy, J., Blackwell, T., “Particle
swarm optimization. An overview”, Swarm Intelli-
gence, 2007, 1, pp. 33-57.

[20] Prins, C., “A simple and effective evolutionary algo-
rithm for the vehicle routing problem”, Computer
and Operations Research, 2004, 31, pp. 1985-2002.

[21] Clerc, M., “Particle Swarm Optimization”, New
Optimization Techniques in Enginerring, 2004, pp.
219-239

[22] Christiansen, C.H., Lysgaard, J. , “A branch-and-
price algorithm for the capacitated vehicle routing
problem with stochastic demands”, Operations Re-
search Letters, 2007, 35, pp.773-781.

2015 ISORA 978-1-78561-086-8 ©2015 IET 209 Luoyang, China, August 21–24, 2015

