
A POLYNOMIAL-SPACE EXACT ALGORITHM FOR

TSP IN DEGREE-5 GRAPHS

Norhazwani Md Yunos1,2, Aleksandar Shurbevski1, Hiroshi Nagamochi1

1Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto
University, 606-8177, Kyoto, Japan

2Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
{wanie, shurbevski, nag}@amp.i.kyoto-u.ac.jp

Keywords: Traveling Salesman Problem, Exact Ex-
ponential Algorithm, Branch-and-reduce, Measure-
and-conquer.

Abstract

The Traveling Salesman Problem (TSP) is one of the
most well-known NP-hard optimization problems. Fol-
lowing a recent trend of research which focuses on de-
veloping algorithms for special types of TSP instances,
namely graphs of limited degree, and thus alleviating
a part of the time and space complexity, we present a
polynomial-space branching algorithm for the TSP in
graphs with degree at most 5, and show that it has
a running time of O∗(2.4723n). To the best of our
knowledge, this is the first exact algorithm specialized
to graphs of such high degree. While the base of the
exponent in the running time bound is greater than
two, our algorithm uses space merely polynomial in an
input instance size, and thus by far outperforms Gure-
vich and Shelah’s O∗(4nnlogn) polynomial-space exact
algorithm for the general TSP (Siam Journal of Com-
putation, Vol. 16, No. 3, pp. 486-502, 1987). In the
analysis of the running time, we use the measure-and-
conquer method, and we develop a set of branching
rules which foster the analysis of the running time.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the
most extensively studied problems in optimization. It
has been formulated as a mathematical problem in the
1930s. Many algorithmic methods have been investi-
gated to beat the challenge of finding the fastest algo-
rithm in terms of running time. On the other hand, it
has proven even more challenging to devise fast algo-
rithms that would use a manageable amount of com-
putation space, bounded by a polynomial in an input
instance’s size. We will review previous algorithmic
attempts, making a distinction between those which
require space exponential in the size of a problem in-
stance, and those requiring space merely polynomial
in the input size. We use the O∗ notation, which sup-
presses polynomial factors.

The first non-trivial algorithm for the TSP in an n-
vertex graph is the O∗(2n)-time dynamic programming
algorithm discovered independently by Bellman [1],

and Held and Karp [9] in the early 1960s. This dy-
namic programming algorithm however, requires also
an exponential amount of space. Ever since, this run-
ning time has only been improved for special types of
graphs. Primarily, investigation efforts have been fo-
cused on graphs in which vertices have a limited de-
gree. Henceforth, let degree-i graph stand for a graph
in which vertices have maximum degree at most i. A
recent improvement of the time bound to O∗(1.2186n)
for degree-3 graphs has been presented by Bodlaen-
der et al. [2]. They have used a general approach for
speeding up straightforward dynamic programming al-
gorithms. For TSP in degree-4 graphs, Gebauer [7] has
shown a time bound of O∗(1.733n), by using a dynamic
programming approach.

In the vein of polynomial space algorithms, Gure-
vich and Shelah [8] have shown that the TSP in a gen-
eral n-vertex graph is solvable in time O∗

(
4nnlogn

)
.

Eppstein [4] has started the exploration into polyno-
mial space TSP algorithms specialized for graphs of
bounded degree by designing an algorithm for degree-3
graphs that runs in O∗(1.260n)-time. He introduced
a branch-and-search method by considering a gener-
alization of the TSP called the forced TSP. Iwama
and Nakashima [10] have claimed an improvement of
Eppstein’s time bound to O∗(1.251n)-time for TSP
in degree-3 graphs. Later, Liskiewicz and Schus-
ter [11] have uncovered some oversights made in Iwama
and Nakashima’s analysis, and proved that their al-
gorithm actually runs in O∗(1.257n)-time. Liskiewicz
and Schuster then made some minor modifications
of Eppstein’s algorithm and showed that this modi-
fied algorithm runs in O∗(1.2553n)-time, a slight im-
provement over Iwama and Nakashima’s algorithm.
Xiao and Nagamochi [14] have recently presented
an O∗(1.2312n)-time algorithm for TSP in degree-3
graphs, and this improved previous time bounds for
polynomial-space algorithms. They used the basic
steps of Eppstein’s branch-and-search algorithm, and
introduced a branching rule based on a cut-circuit
structure. In the process of improving the time bound,
they used simple analysis of measure and conquer, and
effectively analyzed their algorithm by introducing an
amortization scheme over the cut circuit structure, set-
ting weights to both vertices and connected compo-

2015 ISORA 978-1-78561-086-8 ©2015 IET 45 Luoyang, China, August 21–24, 2015

nents of induced graphs.

For TSP in degree-4 graphs, Eppstein [4] designed
an algorithm that runs in O∗(1.890n)-time, based on
a branch-and-search method. Later, Xiao and Nag-
amochi [13] showed an improved value for the upper
bound of the running time and showed that their algo-
rithm runs in O∗(1.692n)-time. Currently, this is the
fastest algorithm for TSP in degree-4 graphs. Basically,
the idea behind their algorithm is to apply reduction
rules until no further reduction is possible, and then
branch on an edge by either including it to a solu-
tion or excluding it from a solution. This is similar
to most previous branch-and-search algorithms for the
TSP. To effectively analyze their algorithm, Xiao and
Nagamochi used the measure and conquer method by
setting a weight to each vertex in a graph. From each
branching operation, they derived a branching vec-
tor using the assigned weight and evaluate how much
weight can be decreased in each of the two instances
obtained by branching on a selected edge e. In this
way, they were able to analyze by how much the to-
tal weight would decrease in each branch. Moreover,
they indicated that the measure will decrease more if
we select a “good” edge to branch on, and gave a set of
simple rules, based on a graph’s topological properties,
for choosing such an edge. However, the analysis of the
running time itself is not as straightforward [13].

To the best of our knowledge, there exist no reports
in the literature of exact algorithms specialized to the
TSP in degree-5 graphs. Therefore, this paper presents
the first algorithm for the TSP in degree-5 graphs,
and presents an upper bound on the running time
of O∗(2.4723n). In this exploration, we use a determin-
istic branch-and-search algorithm for TSP in degree-5
graphs. Basically, our algorithm employs similar tech-
niques to most previous branching algorithms for the
TSP. When there are no vertices of degree 5 in an in-
put graph, we call an existing algorithm for TSP in
degree-4 graphs, and solve the remaining instance. In
the analysis, we use the measure and conquer method
as a tool to get an upper bound of the running time.

The remainder of this paper is organized as follows;
Section 2 overviews the basic notation used in this pa-
per and presents an introduction to the branching al-
gorithm and measure and conquer method. Section
3 describes our polynomial-space branching algorithm.
We state our main result in section 4, where we proceed
with the analysis of the proposed algorithm. Finally,
Section 5 concludes the paper.

2 Methods

2.1 Preliminaries

For a graph G, let V (G) denote the set of vertices
in G, and let E(G) denote the set of edges in G.
A pair of vertices v and u are called neighbors if v
and u are adjacent by an edge uv. We denote the
set of all neighbors of a vertex v by N(v), and de-

note by d(v) the cardinality |N(v)| of N(v), also called
the degree of v. For a subset of vertices W ⊆ V (G),
let N(v;W) = N(v) ∩ W . For a subset of edges
E′ ⊆ E(G), let NE′(v) = N(v) ∩ {u | uv ∈ E′}, and
let dE′(v) = |NE′(v)|. Analogously, let NE′(v;W) =
NE′(v) ∩W , and dE′(v,W) = |NE′(v,W)|. Also, for
a subset E′ of E(G), we denote by G − E′ the graph
(V,E \ E′) obtained from G by removing the edges
in E′.

We consider a generalization of the TSP, named
the forced Traveling Salesman Problem. We define an
instance I = (G,F) that consists of a simple, edge
weighted, undirected graph G, and a subset F of edges
in G, called forced. A vertex is called forced if exactly
one of its incident edges is forced. Similarly, it is called
unforced if no forced edge is incident to it. A Hamilto-
nian cycle in G is called a tour if it passes through all
the forced edges in F . Under these circumstances, the
forced TSP requests to find a minimum cost tour of an
instance (G,F).

In this paper, we assume that the maximum degree
of a vertex in G is at most 5. We denote a forced
(resp., unforced) vertex of degree i by fi (resp., ui).
We are interested in six types of vertices in an instance
of (G,F), namely, u5, f5, u4, f4, u3 and f3-vertices. As
shall be seen in Subsection 2.4.1, forced and unforced
vertices of degree 2 and 1 are treated as special cases.
Let Vfi (resp., Vui), i = 3, 4, 5 denote the set of fi-
vertices (resp., ui-vertices) in (G,F).

2.2 Essentials on Branching Algorithms

We here review how to derive an upper bound on the
number of instances that can be generated from an
initial instance by a branching algorithm.

We can represent the solution space in our branching
algorithm as a search tree. This is a very useful way to
illustrate the execution of the branching rules, and to
aid the time analysis of the branching algorithm. The
search tree is obtained by assigning the input instance
of a problem as a root node, and recursively assigning
a child to a node for each smaller instance obtained
by applying the branching rules. For a single node of
the search tree, the algorithm takes time polynomial in
the size of the node instance, which in turn, is smaller
than or equal to the original instance size. Thus, we
can conclude that the running time of the branching
algorithm is equal to the number of nodes of the search
tree times a polynomial of the original input instance
size.

Let I be a given instance with size µ, and let I ′ and
I ′′ be instances obtained from I by a branching oper-
ation. We use T (µ) to denote the maximum number
of nodes in the search tree of an input of size µ when
we execute our branching algorithm. Let a and b be
the amounts of decrease in size of instances I ′ and I ′′,
respectively; these values directly determine the per-
formance of the algorithm. Then, we call (a, b) the

2015 ISORA 978-1-78561-086-8 ©2015 IET 46 Luoyang, China, August 21–24, 2015

branching vector of the branching rules, and this im-
plies the linear recurrence:

T (µ) ≤ T (µ− a) + T (µ− b) . (1)

To evaluate the performance of this branching vec-
tor, we can use any standard method for linear recur-
rence relations. In fact, it is known that T (µ) is of the
form O (τµ), where τ is the unique positive real root of
the function f(x) = 1−

(
x−a + x−b

)
[6]. The value τ is

called the branching factor (of a given branching vec-
tor), and the running time of the algorithm decreases
with the value of this branching factor.

2.3 The Measure-and-Conquer Method

To effectively analyze our search tree algorithm, we use
the measure and conquer method. A complete descrip-
tion of this method is beyond the scope of this paper,
and the interested reader might refer to the book of
Fomin and Kratsch [6].

The basic idea behind the measure and conquer
method is to assign a measure to an instance, as
opposed to using simply its size when analyzing the
branching vectors of the branching operations. A good
choice for a measure might lead to a significantly im-
proved analysis on the upper bound of the running
time of a branching algorithm. For example, Fomin
et al. [5] have presented simple polynomial-space al-
gorithms for the Maximum Independent Set and the
Minimum Dominating Set Problem, and obtained an
impressive refinement of the time analysis by using the
measure and conquer method. This shows that a good
choice of measure is very important to the time bounds
achievable.

For a given problem instance I of size µ, let W (I) be
the measure of I. When considering a branch and re-
duce algorithm for the concerned problem, intuitively
we seek for a measure which satisfies the following
properties

(i) W (I) = 0 if and only if I can be solved in polyno-
mial time;

(ii) If I ′ is a sub-instance of I obtained through a re-
duction or a branching operation, then W (I ′) ≤
W (I).

We call a measure W satisfying conditions (i) and (ii)
above a proper measure.

2.4 A Polynomial-Space Branching Algo-
rithm

We assume that the maximum degree of a vertex in a
given graph G is at most 5. Basically, our algorithm
contains two major steps. In the first step, the algo-
rithm applies reduction rules until no further reduction
is possible. In the second step, the algorithm applies
branching rules in a reduced instance to search for a
solution. These two steps are repeated iteratively.

As a result of the reduction and branching opera-
tions, the degree of some vertices will decrease, while
the degree of other vertices will remain unchanged. A
forced edge will never disappear, neither by the reduc-
tion nor branching operations, but an unforced edge
may be erased by either of the reduction or branching
operation. Throughout the process of the reduction
and branching operations, the measure of an instance
will never increase.

Details about the reduction and branching proce-
dures will be discussed in the following sub-sections.

2.4.1 Reduction Rules

Reduction is a process of transforming an instance to
a smaller instance. It takes polynomial-time to obtain
a solution of an original instance from a solution of a
smaller instance that has been obtained by a reduction
procedure from the original instance.

Not all forced TSP instances have a tour. If an in-
stance has no tour, we called it infeasible. Lemma 1
gives two sufficient conditions for an instance to be in-
feasible.

Lemma 1 If one of the following conditions holds,
then the instance (G,F) is infeasible.

(i) d(v) ≤ 1 for some vertex v ∈ V (G).
(ii) dF(v) ≥ 3 for some vertex v ∈ V (G).

In this paper, there are two reduction rules applied
in each of the branching operation. These reduction
rules preserve the minimum cost tour of an instance,
as stated in Lemma 2.

Lemma 2 Each of the following reductions preserves
the feasibility and a minimum cost tour of an in-
stance (G,F).

(i) If d(v) = 2 for a vertex v, then add to F any
unforced edge incident to vertex v; and

(ii) If d(v) > 2 and dF(v) = 2 for a vertex v, then
remove from G any unforced edge incident to ver-
tex v.

Proof. Statements (i) and (ii) immediately follow from
the definition of tours. �

From Lemma 1 and Lemma 2, we form our reduction
algorithm as described in Figure 1. An instance (G,F)
which does not satisfy any of the conditions in Lemma 1
and Lemma 2 is called reduced.

2.4.2 Branching Rules

Our algorithm iteratively branches on an unforced edge
e in a reduced instance I = (G,F) by either including e
into F , force(e), or excluding it from G, delete(e). By
applying a branching operation, the algorithm gener-
ates two new instances, called branches, by adding an
unforced edge to F , or by removing it from G.

2015 ISORA 978-1-78561-086-8 ©2015 IET 47 Luoyang, China, August 21–24, 2015

Input: An instance (G,F) such that the maximum
degree of G is at most 5.
Output: A message for the infeasibility of (G,F); or a
reduced instance (G′, F ′) of (G,F).

Initialize (G′, F ′) := (G,F);

while (G′, F ′) is not a reduced instance do

If there is a vertex v in (G′, F ′) such that d(v) ≤ 1
or dF ′(v) ≥ 3 then

Return message “Infeasible”

Elseif there is a vertex v in (G′, F ′) such that 2 =
d(v) > dF ′(v) then

Let E† be the set of unforced edges incident to all
such vertices;
Set F ′ := F ′ ∪ E†

Elseif there is a vertex v in (G′, F ′) such that d(v) >
dF ′(v) = 2 then

Let E† be the set of unforced edges incident to all
such vertices;
Set G′ := G′ − E†

End while;
Return (G′, F ′).

Figure 1: Algorithm Red(G,F)

To describe our branching algorithm, let (G,F) be a
reduced instance such that the maximum degree of G is
at most 5. In (G,F), an unforced edge e = vt incident
to a vertex v of degree 5 is called optimal, if it satisfies
a condition (c-i) below with minimum index i, over all
unforced edges vt in (G,F):

(c-1) v ∈ Vf5 and t ∈ NU (v;Vf3) such that NU (v) ∩
NU (t) = ∅;

(c-2) v ∈ Vf5 and t ∈ NU (v;Vf3) such that NU (v) ∩
NU (t) 6= ∅;

(c-3) v ∈ Vf5 and t ∈ NU (v;Vu3);
(c-4) v ∈ Vf5 and t ∈ NU (v;Vf4) such that NU (v) ∩

NU (t) = ∅;
(c-5) v ∈ Vf5 and t ∈ NU (v;Vf4) such that NU (v) ∩

NU (t) 6= ∅;
(I) |NU (v) ∩NU (t)| = 1; and

(II) |NU (v) ∩NU (t)| = 2;
(c-6) v ∈ Vf5 and t ∈ NU (v;Vu4);
(c-7) v ∈ Vf5 and t ∈ NU (v;Vf5) such that NU (v) ∩

NU (t) = ∅;
(c-8) v ∈ Vf5 and t ∈ NU (v;Vf5) such that NU (v) ∩

NU (t) 6= ∅;
(I) |NU (v) ∩NU (t)| = 1;

(II) |NU (v) ∩NU (t)| = 2; and
(III) |NU (v) ∩NU (t)| = 3;

(c-9) v ∈ Vf5 and t ∈ NU (v;Vu5);
(c-10) v ∈ Vu5 and t ∈ NU (v;Vf3);
(c-11) v ∈ Vu5 and t ∈ NU (v;Vf4);
(c-12) v ∈ Vu5 and t ∈ NU (v;Vu3);
(c-13) v ∈ Vu5 and t ∈ NU (v;Vu4); and
(c-14) v ∈ Vu5 and t ∈ NU (v;Vu5).

We refer to the above conditions for choosing an op-
timal edge to branch on, c-1 to c-14, as the branching
rules. The collective set of branching rules are illus-
trated in Figure 2.

For convenience in the analysis of the algorithm, case
(c-5) and case (c-8) have been subdivided into subcases
according to the cardinality of the neighborhood inter-
section. Intersections of lower cardinality take prece-
dence over higher ones.

Given a reduced instance I = (G,F), our algorithm
first checks whether there exists a vertex of degree 5,
and if it does, chooses an optimal edge according to the
branching rules. If there exists no optimal edge accord-
ing to the branching rules, then the reduced instance
has no more vertices of degree 5, and the maximum de-
gree of the reduced instance at this point is at most 4.
Then, we can call a polynomial space exact algorithm
for the TSP that is specialized for degree-4 graphs, e.g.,
the algorithm specialized for degree-4 graphs by Xiao
and Nagamochi [13]. Our branching algorithm is de-
scribed in Figure 3.

2.4.3 Weight Setting

In order to obtain a measure which will imply the same
running time bound as a function of the size of a TSP
instance, we require that the weight of each vertex is
not greater than 1. In what follows, we examine some
necessary constraints which the vertex weights should
satisfy in order to obtain a proper measure.

For i = {3, 4, 5}, we denote wi to be the weight of
a ui-vertex, and wi′ to be the weight of an fi-vertex.
The conditions for a proper measure require that the
measure of an instance obtained through a branching
or a reduction operation will not be greater than the
measure of the original instance. Thus, vertex weights
should satisfy the following relations

w5 ≤ 1, (2)

w5′ ≤ w5, (3)

w4′ ≤ w4, (4)

w3′ ≤ w3, (5)

w3 ≤ w4 ≤ w5, and (6)

w3′ ≤ w4′ ≤ w5′ . (7)

The vertex weight for vertices of degree less than 3 is
set to be 0.

We proceed to show in the algorithms given in Fig-
ures 1 and 3, setting vertex weights which satisfy the
conditions of Eqs. (3) to (7) is sufficient to obtain a
proper measure.

Lemma 3 If the weights of vertices are chosen as in
Eqs. (3) to (7), then the measure W (I) never increases
as a result of the reduction or the branching operations
of Figure 1 and Figure 3.

Proof. Let I = (G,F) be a given instance of the forced
TSP. Due to our definition of the measure W (I) of

2015 ISORA 978-1-78561-086-8 ©2015 IET 48 Luoyang, China, August 21–24, 2015

: unforced edges : forced edges

c-1

v

t1

t2 t3

t4

e

t5

c-2

v

t1

t2 t3

t4

e

c-3

v

t1

t2 t3

t4

e

t5 t6

c-4

v

t1

t2 t3

t4

e

t5 t6

c-5(I)

v

t1

t2 t3

t4

e

t5

c-5(II)

v

t1

t2 t3

t4

e

c-6

t7

v

t1

t2 t3

t4

e

t5 t6
c-7

t7

v

t1

t2 t3

t4

e

t5 t6

c-8(I)

v

t1

t2 t3

t4

e

t5 t6

c-8(II)

v

t1

t2 t3

t4

e

t5

c-8(III)

v

t1

t2 t3

t4

e

c-9
t7

v

t1

t2 t3

t4

e

t5 t6

t8

c-10

v

t1

t2

e

t6

t3

t4

t5

c-11

v

t1

t2

e

t6 t7

t3

t4

t5

c-12

v

t1

t2

e

t6 t7

t3

t4

t5

c-14

t3

t4

t5

t8

v

t1

t2

e

t6 t7

t9

c-13

t3

t4

t5

t8

v

t1

t2

e

t6 t7

Figure 2: Illustration of the Branching Rules

Eq.(18), it suffices to show that none of the individual
vertex weights will increase as a result of a reduction
or a branching operation in the algorithms of Figures 1

and 3.

The branching rules state that for an unforced edge
e in E(G)\F , two subinstances are generated by either

2015 ISORA 978-1-78561-086-8 ©2015 IET 49 Luoyang, China, August 21–24, 2015

Input: An instance (G,F) such that the maximum
degree of G is at most 5.
Output: A message for the infeasibility of (G,F); or
the minimum cost of a tour of (G,F).

Run Red(G,F);

If Red(G′, F ′) returns message “Infeasible” then

Return message “Infeasible”

Else

Let (G′, F ′) := Red(G,F);

If Vu5 ∪ Vf5 6= ∅ then
Choose an optimal unforced edge e
Returnmin{tsp5(G′, F ′∪{e}), tsp5(G′−{e}, F ′)}

Else /* there is no vertex of degree 5 in (G′, F ′) */
Return tsp4(G′, F ′).

Note: The input and output of algorithm tsp4(G,F)
are as follows
Input: An instance (G,F) such that the maximum de-
gree of G is at most 4.
Output: A message for the infeasibility of (G,F); or the
minimum cost of a tour of (G,F).

Figure 3: Algorithm tsp5(G,F)

setting F := F ∪{e}, termed as force(e), or by setting
G := G − {e}, termed delete(e). In fact, we bring
to attention that a reduction operation, if it does not
return a message “Infeasible,” is in fact a repeated ap-
plication of the above two steps, force(e) or delete(e),
for some unforced edge e, identified by the conditions
in Lemma 2. Therefore, we proceed with analyzing
the effects of applying the force(e) or the delete(e)
operation.

Let e = uv be an unforced edge to which one of the
force(e) or delete(e) operations will be applied. Both
u and v must have degree more than 2, otherwise by
Lemma 1, the instance is infeasible. Without loss of
generality, we observe the effect of the operation on
the vertex weight ω(v).

In the case that operation force(e) is applied, the
following cases may arise.

− If v is an unforced vertex, then v will become
forced. By Eqs. (3) to (5), the weight ω(v) will
not increase.

− If v is a forced vertex, then ω(v) will become 0.
− If dF (v) = 2, then by Lemma 1 the instance will

become infeasible.

On the other hand, if operation delete(e) is applied,
we observe the following cases.

− If v is either forced or unforced, and d(v) ≥ 3,
then the degree of v will decrease by one, and by
Eqs. (6) and (7) ω(v) will not increase.

− If v is either forced or unforced, and d(v) ≤ 2, then
by Lemma 1 the instance will become infeasible.

Following the above observations, we conclude that
the complete measure W (I) of a given instance I =
(G,F) of the forced TSP will not increase as a result
of the reduction and branching operations of the algo-
rithms in Figures 1 and 3. �

To simplify some arguments, we introduce the fol-
lowing notation:

∆3 = w3 − w3′ ,

∆4 = w4 − w4′ ,

∆5 = w5 − w5′ ,

∆4−3 = w4 − w3,

∆5−4 = w5 − w4,

∆5−3 = w5 − w3,

∆′4−3 = w4′ − w3′ ,

∆′5−4 = w5′ − w4′ , and

∆′5−3 = w5′ − w3′ .

To simplify the list of our branching vectors, we use
the following notation:

m1 = min{w3′ , w3, ∆′4−3, ∆4−3, ∆′5−4, ∆5−4},
(8)

m2 = min{w3, ∆′4−3, ∆4−3, ∆′5−4, ∆5−4}, (9)

m3 = min{w3′ , ∆3, w4′ , ∆4, w5′ , ∆5}, (10)

m4 = min{∆′4−3, ∆4−3, ∆′5−4, ∆5−4}, (11)

m5 = min{w4′ , w4, ∆′5−3, ∆5−3}, (12)

m6 = min{∆4−3, ∆′5−4, ∆5−4}, (13)

m7 = min{∆′5−4, ∆5−4}, (14)

m8 = min{∆′5−3, ∆5−3}, (15)

m9 = min{w3′ , w3, ∆′4−3, ∆4−3, ∆5−4}, and (16)

m10 = min{w3′ , ∆3, w4′ , ∆4, ∆5}. (17)

3 Results

In order to adopt the measure and conquer method
in our algorithm, we need to set a measure W for a
given an instance I = (G,F) of the forced TSP. To
this effect, we set a non-negative vertex weight function
ω : V → R+ in the graph G, and we use the sum of
weights of all vertices in the graph as the measure W (I)
of instance I. That is,

W (I) =
∑

v∈V (G)

(ω(v)) . (18)

We bring to attention the fact that the number n of
vertices in the graph G remains unmodified throughout
the process of the reduction and branching operations.
In addition to seeking a proper measure, we also require
that the weight of each vertex is not greater than 1, and
therefore, the measure W (I) will not be greater than
the number n of vertices in G. As a consequence, a

2015 ISORA 978-1-78561-086-8 ©2015 IET 50 Luoyang, China, August 21–24, 2015

running time bound as a function of the measure W (I)
implies the same running time bound as a function
of n. The weight assigned to each vertex type plays an
important role, since the value of the branching factor
depends solely on these weights.

Let the vertex weight function ω(v) be chosen as
follows:

ω(v) =





w3′ = 0.183471 for an f3-vertex v

w3 = 0.322196 for a u3-vertex v

w4′ = 0.347458 for an f4-vertex v

w4 = 0.700651 for a u4-vertex v

w5′ = 0.491764 for an f5-vertex v

w5 = 1 for a u5-vertex v

0 otherwise.

(19)

Lemma 4 If the vertex weight function ω(v) is set as
in Eq. (19), then each branching operation in Figure 3
has a branching factor not greater than 2.472232.

A proof of Lemma 4 will be derived analytically in
the several subsections which follow. From the lemma,
we get our main result:

Theorem 1 The TSP in an n-vertex graph G with
maximum degree 5 can be solved in O∗(2.4723n)-time
and polynomial-space.

In the remainder of the analysis, for an optimal
edge e = vt1, we denote NU (v) by {t1, t2, . . . , ta},
a = dU (v), and NU (t1) \ {v} by {ta+1, ta+1, . . . , ta+b},
b = dU (t1) − 1. We assume without loss of gen-
erality that t1+i = ta+i for i = 1, 2, . . . , c, where
c = |NU (v) ∩ NU (t1)|, the number of good neighbors
that v and t1 have in common.

3.1 Branching on Edges Around f5-
vertices (c-1 to c-9)

This section derives branching vectors for the branch-
ing operation on an optimal edge e = vt1, incident to
an f5-vertex v, distinguishing nine cases for conditions
c-1 to c-9.

Case c-1: There exist vertices v ∈ Vf5 and t1 ∈
NU (v;Vf3) such that NU (v) ∩ NU (t1) = ∅ (see Fig-
ure 4): We branch on edge vt1. Note that NU (t1) \
{v} = {t5}.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2,
vt3, vt4 and t1t5 will be deleted from G′ by the re-
duction rules. Both v and t1 will become vertices
of degree 2. From Eq. (19), the weight of vertices
of degree 2 is 0. So, the weight of vertex v de-
creases by w5′ and the weight of vertex t1 decreases
by w3′ . Each of the vertices t2, t3 and t4 can be
either a type f3, u3, f4, u4, f5, or u5-vertex, and
each of their weights would decrease by at least m1 =
min

{
w3′ , w3,∆

′
4−3,∆4−3,∆′5−4,∆5−4

}
. If vertex t5 is

: unforced edges : forced edges

: newly deleted edges : newly forced edges

(a) force(vt1) in c-1

v

t1

t2 t3

t4

e

t5

(b) delete(vt1) in c-1

v

t1

t2 t3

t4

e

t5

Figure 4: Illustration of branching rule c-1, where ver-
tex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf3) such that
NU (v) ∩NU (t1) = ∅.

an f3-vertex (resp., u3, f4, u4, f5, or a u5-vertex), then
the weight decrease α of vertex t5 would be w3′ (resp.,
w3, ∆′4−3, ∆4−3, ∆′5−4, and ∆5−4). Thus, the total
weight decrease in the branch of force(vt1) is at least
(w5′ + w3′ + 3m1 + α).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation, and edge t1t5 will
be added to F ′ by the reduction rules. The weight of
vertex v decreases by ∆′5−4 and the weight of vertex t1
decreases by w3′ . If vertex t5 is an f3-vertex (resp., u3,
f4, u4, f5, or a u5-vertex), then the weight decrease β
of vertex t5 would be w3′ (resp., ∆3, w4′ , ∆4, w5′ , and
∆5). Thus, the total weight decrease in the branch of
delete(vt1) is at least (w5′ − w4′ + w3′ + β).

As a result, we get the following six branching vec-
tors:

(w5′ + w3′ + 3m1 + α, w5′ − w4′ + w3′ + β) (20)

for (α, β) ∈ {(w3′ , w3′), (w3,∆3), (∆′4−3, w4′),
(∆4−3,∆4), (∆′5−4, w5′), (∆5−4,∆5)}.

c-2. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vf3)
such that NU (v) ∩ NU (t1) = {t2} (see Figure 5): We
branch on edge vt1.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2,
vt3, vt4 and t1t2 will be deleted from G′ by the re-
duction rules. So, the weight of vertex v decreases
by w5′ , and the weight of vertex t1 decreases by
w3′ . Each of the vertices t3 and t4 can be either
a type f3, u3, f4, u4, f5, or u5-vertex, and each
of their weights would decrease by at least m1 =
min

{
w3′ , w3,∆

′
4−3,∆4−3,∆′5−4,∆5−4

}
.

There are two possible cases for the vertex type of
vertex t2. First, let t2 be an f3 or u3-vertex. After
performing the branching operation, t2 would become
a vertex of degree 1. By Lemma 1, case (i), this is
infeasible, and the algorithm will return a message of
infeasibility.

2015 ISORA 978-1-78561-086-8 ©2015 IET 51 Luoyang, China, August 21–24, 2015

v

t1

t2 t3

t4

e

(a) force(vt1) in c-2 (b) delete(vt1) in c-2

v

t1

t2 t3

t4

e

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 5: Illustration of branching rule c-2, where ver-
tex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf3) such that
NU (v) ∩NU (t1) = {t2}.

Second, let t2 be an f4, u4, f5, or u5-vertex. If t2
is an f4-vertex (resp., u4, f5, or a u5-vertex), then the
weight decrease α of vertex t2 would be w4′ (resp., w4,
∆′5−3, and ∆5−3). Thus, the total weight decrease in
the branch of force(vt1) is at least (w5′+w3′+2m1+α).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation, and edge t1t2 will
be added to F ′ by the reduction rules. So, the weights
of vertices v and t1 decrease by ∆′5−4 and w3′ , respec-
tively. If vertex t2 is an f4-vertex (resp., u4, f5, or
a u5-vertex), then the weight decrease β of vertex t2
would be w4′ (resp., ∆4, w5′ , and ∆5). Thus, the total
weight decrease in the branch of delete(vt1) is at least
(w5′ − w4′ + w3′ + β).

As a result, we get the following four branching vec-
tors:

(w5′ + w3′ + 2m1 + α, w5′ − w4′ + w3′ + β) (21)

for (α, β) ∈ {(w4′ , w4′), (w4,∆4), (∆′5−3, w5′),
(∆5−3,∆5)}.

c-3. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vu3)
(see Figure 6): We branch on edge vt1. Note that
NU (t1) \ {v} = {t5, t6}.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2, vt3
and vt4 will be deleted from G′ by the reduction rules.
So, the weights of vertices v and t1 decrease by w5′

and ∆3, respectively. Each of vertices t2, t3 and
t4 can be either a type u3, f4, u4, f5, or u5-vertex,
and each of their weights would decrease by at least
m2 = min

{
w3,∆

′
4−3,∆4−3,∆′5−4,∆5−4

}
. Thus, the

total weight decrease in the branch of force(vt1) is at
least (w5′ + w3 − w3′ + 3m2).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation and edges t1t5 and
t1t6 will be added to F ′ by the reduction rules. So, the
weight of vertex v decreases by ∆′5−4 and the weight of
vertex t1 decreases by w3. Each of the vertices t5 and
t6 can be either a type f3, u3, f4, u4, f5, or u5-vertex,

v

t1

t2 t3

t4

e

t5 t6

(a) force(vt1) in c-3 (b) delete(vt1) in c-3

v

t1

t2 t3

t4

e

t5 t6

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 6: Illustration of branching rule c-3, where ver-
tex v ∈ Vf5 and vertex t1 ∈ NU (v;Vu3).

and each of their weights would decrease by at least
m3 = min {w3′ ,∆3, w4′ ,∆4, w5′ ,∆5}. Thus, the total
weight decrease in the branch of delete(vt1) is at least
(w5′ − w4′ + w3 + 2m3).

As a result, we get the following branching vector:

(w5′ + w3 − w3′ + 3m2, w5′ − w4′ + w3 + 2m3) .
(22)

c-4. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vf4)
such that NU (v) ∩ NU (t1) = ∅ (see Figure 7): We
branch on edge vt1. Note that NU (t1) \ {v} = {t5, t6}.

v

t1

t2 t3

t4

e

t5 t6

(b) delete(vt1) in c-4(a) force(vt1) in c-4

v

t1

t2 t3

t4

e

t5 t6

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 7: Illustration of branching rule c-4, where ver-
tex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf4), such that
NU (v) ∩NU (t1) = ∅.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2,
vt3, vt4, t1t5 and t1t6 will be deleted from G′ by
the reduction rules. So, the weight of vertex v de-
creases by w5′ and the weight of vertex t1 decreases
by w4′ . Each of the vertices t2, t3 and t4 can
be either a type f4, u4, f5, or u5-vertex, and each
of their weights would decrease by at least m4 =
min

{
∆′4−3,∆4−3,∆′5−4,∆5−4

}
. Each of vertices t5

and t6 can be either a type f3, u3, f4, u4, f5, or u5-
vertex, and each of their weights would decrease by

2015 ISORA 978-1-78561-086-8 ©2015 IET 52 Luoyang, China, August 21–24, 2015

at least m1 = min
{
w3′ , w3,∆

′
4−3,∆4−3,∆′5−4,∆5−4

}
.

Thus, the total decrease in the branch of force(vt1) is
at least (w5′ + w4′ + 3m4 + 2m1).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, the weight of
vertex v decreases by ∆′5−4 and the weight of vertex t1
decreases by ∆′4−3. Thus, the total weight decrease in
the branch of delete(vt1) is at least (w5′ −w3′). As a
result, we get the following branching vector:

(w5′ + w4′ + 3m4 + 2m1, w5′ − w3′) . (23)

c-5. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vf4)
such that NU (v)∩NU (t1) 6= ∅. We distinguish two sub
cases, according to the cardinality of the intersection
NU (v) ∩ NU (t1), (c-5(I)), |NU (v) ∩NU (t1)| = 1, and
(c-5(II)), |NU (v) ∩NU (t1)| = 2.

c-5(I). Without loss of generality, assume that
NU (v) ∩ NU (t1) = {t2} (see Figure 8): We branch
on edge vt1. Note that NU (t1) \ {v} = {t5}.

v

t1

t2 t3

t4

e

t5

(a) force(vt1) in c-5(I) (b) delete(vt1) in c-5(I)

v

t1

t2 t3

t4

e

t5

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 8: Illustration of branching rule c-5(I), where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf4), such that
NU (v) ∩NU (t1) = {t2}.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2,
vt3, vt4, t1t2, and t1t5 will be deleted from G′ by
the reduction rules. So, the weight of vertex v de-
creases by w5′ and the weight of vertex t1 decreases
by w4′ . Vertex t2 can be either a type f4, u4, f5, or
u5-vertex, and its weight would decrease by at least
m5 = min

{
w4′ , w4,∆

′
5−3,∆5−3

}
. Each of the ver-

tices t3 and t4 can be either a type f4, u4, f5, or u5-
vertex, and each of their weights would decrease by
at least m4 = min

{
∆′4−3,∆4−3,∆′5−4,∆5−4

}
. Ver-

tex t5 can be either a type f3, u3, f4, u4, f5, or
u5-vertex, and its weight would decrease by at least
m1 = min

{
w3′ , w3,∆

′
4−3,∆4−3,∆′5−4,∆5−4

}
. Thus,

the total weight decrease in the branch of force(vt1)
is at least (w5′ + w4′ +m5 + 2m4 +m1).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, the weight of

vertex v decreases by ∆′5−4, and the weight of vertex t1
decreases by ∆′4−3. Thus, the total weight decrease in
the branch of delete(vt1) is at least (w5′ −w3′). As a
result, we get the following branching vector:

(w5′ + w4′ +m5 + 2m4 +m1, w5′ − w3′) . (24)

c-5(II). Without loss of generality, assume that
NU (v) ∩ NU (t1) = {t2, t3} (see Figure 9): We branch
on edge vt1.

v

t1

t2 t3

t4

e

(a) force(vt1) in c-5(II) (b) delete(vt1) in c-5(II)

v

t1

t2 t3

t4

e

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 9: Illustration of branching rule c-5(II), where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf4) such that
NU (v) ∩NU (t1) = {t2, t3}.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edge vt2, vt3,
vt4, t1t2 and t1t3 will be deleted from G′ by the re-
duction rules. So, the weight of vertex v decreases
by w5′ and the weight of vertex t1 decreases by w4′ .
Each of vertices t2 and t3 can be either a type f4, u4,
f5, or u5-vertex, and each of their weights would de-
crease by at least m5 = min

{
w4′ , w4,∆

′
5−3,∆5−3

}
.

Vertex t4 can be either a type f3, u3, f4, u4, f5, or
u5-vertex, and its weight would decreases by at least
m4 = min

{
∆′4−3,∆4−3,∆′5−4,∆5−4

}
. Thus, the total

weight decrease in the branch of force(vt1) is at least
(w5′ + w4′ + 2m5 +m4).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, the weight of
vertex v decreases by ∆′5−4, and the weight of vertex t1
decreases by ∆′4−3. Thus, the total weight decrease in
the branch of delete(vt1) is at least (w5′ −w3′). As a
result, we get the following branching vector:

(w5′ + w4′ + 2m5 +m4, w5′ − w3′) . (25)

c-6. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vu4)
(see Figure 10): We branch on edge vt1. Note that
NU (t1) \ {v} = {t5, t6, t7}.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2, vt3
and vt4 will be deleted from G′ by the reduction rules.
So, the weight of vertex v decreases by w5′ and the
weight of vertex t1 decreases by ∆4. Each of the ver-
tices t2, t3 and t4 can be either a type u4, f5, or u5-
vertex, and each of their weights would decrease by at

2015 ISORA 978-1-78561-086-8 ©2015 IET 53 Luoyang, China, August 21–24, 2015

t7

v

t1

t2 t3

t4

e

t5 t6

(a) force(vt1) in c-6 (b) delete(vt1) in c-6

t7

v

t1

t2 t3

t4

e

t5 t6

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 10: Illustration of branching rule c-6, where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vu4).

least m6 = min
{

∆4−3,∆′5−4,∆5−4
}

. Thus, the total
weight decrease in the branch of force(vt1) is at least
(w5′ + w4 − w4′ + 3m6).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, the weight of
vertex v decreases by ∆′5−4 and the weight of vertex t1
decreases by ∆4−3. Thus, the total weight decrease in
the branch of delete(vt1) is at least (w5′ −w4′ +w4−
w3). As a result, we get the following branching vector:

(w5′ + w4 − w4′ + 3m6, w5′ − w4′ + w4 − w3) . (26)

c-7. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vf5)
such that NU (v) ∩ NU (t1) = ∅ (see Figure 11): We
branch on edge vt1. Note that NU (t1) \ {v} =
{t5, t6, t7}.

t7

v

t1

t2 t3

t4

e

t5 t6

(b) delete(vt1) in c-7(a) force(vt1) in c-7

t7

v

t1

t2 t3

t4

e

t5 t6

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 11: Illustration of branching rule c-7, where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf5), such that
NU (v) ∩NU (t1) = ∅.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2, vt3,
vt4, t1t5, t1t6 and t1t7 will be deleted from G′ by the
reduction rules. So, both weights of vertex v and ver-
tex t1 decreases by w5′ , each. Each of vertices t2,
t3, t4, t5, t6 and t7 can be either a type f5, or u5-
vertex, and each of their weights would decrease by

at least m7 = min
{

∆′5−4,∆5−4
}

. Thus, the total
weight decrease in the branch of force(vt1) is at least
(2w5′ + 6m7).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, both weights
of vertices v and t1 decreases by ∆′5−4, each. Thus, the
total weight decrease in the branch of delete(vt1) is
at least (2w5′−2w4′). As a result, we get the following
branching vector:

(2w5′ + 6m7, 2w5′ − 2w4′) . (27)

c-8. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vf5)
such that NU (v) ∩ NU (t1) 6= ∅. We distinguish three
sub cases, according to the cardinality of the inter-
section NU (v) ∩NU (t1), (c-8(I)), |NU (v) ∩NU (t1)| =
1, (c-8(II)), |NU (v) ∩NU (t1)| = 2, and (c-8(III)),
|NU (v) ∩NU (t1)| = 3.

c-8(I). Without loss of generality, assume that
NU (v) ∩ NU (t1) = {t2} (see Figure 12): We branch
on edge vt1. Note that NU (t1) \ {v} = {t5, t6}.

v

t1

t2 t3

t4

e

t5 t6

(a) force(vt1) in c-8(I) (b) delete(vt1) in c-8(I)

v

t1

t2 t3

t4

e

t5 t6

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 12: Illustration of branching rule c-8(I), where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf5), such that
NU (v) ∩NU (t1) = {t2}.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2, vt3,
vt4, t1t2, t1t5 and t1t6 will be deleted from G′ by the
reduction rules. Both weights of vertex v and vertex t1
decreases by w5′ , each. Vertex t2 can be either a type
f5 or u5-vertex, and its weight would decreases by at
least m8 = min

{
∆′5−3,∆5−3

}
. Each of vertices t3, t4,

t5 and t6 can be either a type f5, or u5-vertex, and
each of their weights would decrease by at least m7 =
min

{
∆′5−4,∆5−4

}
. Thus, the total weight decrease in

the branch of force(vt1) is at least (2w5′ + 4m7 +m8).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. Both weights of
vertices v and t1 decreases by ∆′5−4, each. Thus, the
total weight decrease in the branch of delete(vt1) is
at least (2w5′−2w4′). As a result, we get the following
branching vector:

(2w5′ + 4m7 +m8, 2w5′ − 2w4′) . (28)

2015 ISORA 978-1-78561-086-8 ©2015 IET 54 Luoyang, China, August 21–24, 2015

c-8(II). Without loss of generality, assume that
NU (v)∩NU (t1) = {t2, t3} (see Figure 13): We branch
on edge vt1. Note that NU (t1) \ {v} = {t5}.

v

t1

t2 t3

t4

e

t5

(b) delete(vt1) in c-8(II)(a) force(vt1) in c-8(II)

v

t1

t2 t3

t4

e

t5

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 13: Illustration of branching rule c-8(II), where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf5), such that
NU (v) ∩NU (t1) = {t2, t3}.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2, vt3,
vt4, t1t2, t1t3 and t1t5 will be deleted from G′ by
the reduction rules. So, both weights of vertex v
and vertex t1 decreases by w5′ , each. Each of ver-
tices t2 and t3 can be either a type f5, or u5-vertex,
and each of their weights would decrease by at least
m8 = min

{
∆′5−3,∆5−3

}
. Each of vertices t4 and

t5 can be either a type f5, or u5-vertex, and each
of their weights would decrease by at least m7 =
min

{
∆′5−4,∆5−4

}
. Thus, the total weight decrease in

the branch of force(vt1) is at least (2w5′ +2m8+2m7).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, both weights
of vertex v and vertex t1 decreases by ∆′5−4, each. The
total weight decrease in the branch of delete(vt1) is
at least (2w5′−2w4′). As a result, we get the following
branching vector:

(2w5′ + 2m8 + 2m7, 2w5′ − 2w4′) . (29)

c-8(III). Without loss of generality, assume that
NU (v) ∩ NU (t1) = {t2, t3, t4} (see Figure 14): We
branch on edge vt1.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2, vt3,
vt4, t1t2, t1t3 and t1t4 will be deleted from G′ by
the reduction rules. So, both weights of vertex v
and vertex t1 decreases by w5′ , each. Each of ver-
tices t2, t3, and t4 can be either a type f5, or u5-
vertex, and each of their weights would decrease by
at least m8 = min

{
∆′5−3,∆5−3

}
. Thus, the total

weight decrease in the branch of force(vt1) is at least
(2w5′ + 3m8).

v

t1

t2 t3

t4

e

(b) delete(vt1) in c-8(III)(a) force(vt1) in c-8(III)

v

t1

t2 t3

t4

e

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 14: Illustration of branching rule c-8(III), where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vf5), such that
NU (v) ∩NU (t1) = {t2, t3, t4}.

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. Thus, both
weights of vertex v and vertex t1 decreases by ∆′5−4,
each. The total weight decrease in the branch of
delete(vt1) is at least (2w5′ − 2w4′). As a result, we
get the following branching vector:

(2w5′ + 3m8, 2w5′ − 2w4′) . (30)

c-9. There exist vertices v ∈ Vf5 and t1 ∈ NU (v;Vu5)
(see Figure 15): We branch on edge vt1.

t7

v

t1

t2 t3

t4

e

t5
t6

t8

(b) delete(vt1) in c-9(a) force(vt1) in c-9

t7

v

t1

t2 t3

t4

e

t5
t6

t8

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 15: Illustration of branching rule c-9, where
vertex v ∈ Vf5 and vertex t1 ∈ NU (v;Vu5).

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges vt2, vt3
and vt4 will be deleted from G′ by the reduction rules.
So, the weight of vertex v decreases by w5′ , and the
weight of vertex t1 decreases by ∆5. Each of vertices
t2, t3 and t4 can only be a type u5-vertex, and each
of their weights decrease by ∆5−4. Thus, the total
weight decrease in the branch of force(vt1) is at least
(4w5 − 3w4).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. Thus, the weight
of vertex v decreases by ∆′5−4, and the weight of ver-
tex t1 decreases by ∆5−4. The total weight decrease in

2015 ISORA 978-1-78561-086-8 ©2015 IET 55 Luoyang, China, August 21–24, 2015

the branch of delete(vt1) is at least (w5 +w5′ −w4 −
w4′). Then, we get the following branching vector:

(4− 3w4, 1 + w5′ − w4 − w4′) . (31)

3.2 Branching on Edges Around u5-
vertices (c-10 to c-14)

If none of the first nine conditions can be executed, this
means that the graph has no f5-vertices. But this does
not mean that the maximum degree of the graph has
been reduced to 4, since there might still be u5-vertices.
This section derives branching vectors for branchings
on an optimal edge e = vt1 incident to a u5-vertex v,
distinguishing the five cases for conditions c-10 to c-14.

c-10. There exist vertices v ∈ Vu5 and t1 ∈
NU (v;Vf3) (see Figure 16): We branch on edge vt1.
Note that NU (t1) \ {v} = {t6}.

v

t1

t2

e

t6

t3

t4

t5

(a) force(vt1) in c-10 (b) delete(vt1) in c-10

v

t1

t2

e

t6

t3

t4

t5

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 16: Illustration for c-10 where vertices v ∈ Vu5
and t1 ∈ NU (v;Vf3).

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edge t1t6 will be
deleted from G′ by the reduction rules. So, the weight
of vertex v decreases by ∆5, and the weight of vertex t1
decreases by w3′ . If vertex t6 is an f3-vertex (resp., u3,
f4, u4, or a u5-vertex), then the weight decrease α of
vertex t6 would be w3′ (resp., w3, ∆′4−3, ∆4−3, and
∆5−4). Thus, the total weight decrease in the branch
of force(vt1) is at least (w5 − w5′ + w3′ + α).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation, and edge t1t6 will
be added to F ′ by the reduction rules. The weight
of vertex v decreases by ∆5−4, and the weight of ver-
tex t1 decreases by w3′ . If vertex t6 is an f3-vertex
(resp., u3, f4, u4, or a u5-vertex), then the weight de-
crease β of vertex t6 would be w3′ (resp., ∆3, w4′ , ∆4,
and ∆5). Thus, total weight decrease in the branch of
delete(vt1) is at least (w5 − w4 + w3′ + β).

As a result, we get five branching vectors:

(1− w5′ + w3′ + α, 1− w4 + w3′ + β) (32)

for (α, β) ∈ {(w3′ , w3′), (w3,∆3), (∆′4−3, w4′),
(∆4−3,∆4), (∆5−4,∆5)}.
c-11. There exist vertices v ∈ Vu5 and t1 ∈

NU (v;Vf4) (see Figure 17): We branch on edge vt1.
Note that NU (t1) \ {v} = {t6, t7}.

v

t1

t2

e

t6 t7

t3

t4

t5

(a) force(vt1) in c-11 (b) delete(vt1) in c-11

v

t1

t2

e

t6 t7

t3

t4

t5

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 17: Illustration for c-11 where vertices v ∈ Vu5
and t1 ∈ NU (v;Vf4).

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation, and edges t1t6 and
t1t7 will be deleted from G′ by the reduction rules.
So, the weight of vertex v decreases by ∆5, and the
weight of vertex t1 decreases by w4′ . Each of vertices
t6 and t7 can be either a type f3, u3, f4, u4, or u5-
vertex, and each of their weights would decrease by
at least m9 = min

{
w3′ , w3,∆

′
4−3,∆4−3,∆5−4

}
. Thus,

the total weight decrease in the branch of force(vt1)
is at least (w5 − w5′ + w4′ + 2m9).

In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, the weight of
vertex v decreases by ∆5−4, and the weight of vertex t1
decreases by ∆′4−3. The total weight decrease in the
branch of delete(vt1) is at least (w5−w4 +w4′ −w3′).
As a result, we get the following branching vector:

(1− w5′ + w4′ + 2m9, 1− w4 + w4′ − w3′) . (33)

c-12. There exist vertices v ∈ Vu5 and t ∈
NU (v;Vu3) (see Figure 18): We branch on edge vt1.
Note that NU (t1) \ {v} = {t6, t7}.

v

t1

t2

e

t6 t7

t3

t4

t5

(a) force(vt1) in c-12 (b) delete(vt1) in c-12

v

t1

t2

e

t6 t7

t3

t4

t5

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 18: Illustration of branching rule c-12, where
vertex v ∈ Vu5 and vertex t ∈ NU (v;Vu3).

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation. So, the weight of
vertex v decreases by ∆5, and the weight of vertex t1
decreases by ∆3. The total weight decrease in the

2015 ISORA 978-1-78561-086-8 ©2015 IET 56 Luoyang, China, August 21–24, 2015

branch of force(vt1) is at least (w5 −w5′ +w3 −w3′).
In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation, and edges t1t6
and t1t7 will be added to F ′ by the reduction rules.
So, the weight of vertex v decreases by ∆5−4, and
the weight of vertex t1 decreases by w3. Each of ver-
tices t6 and t7 can be either a type f3, u3, f4, u4, or
u5-vertex, and each of their weights would decrease by
at least m10 = min{w3′ ,∆3, w4′ ,∆4,∆5}. Thus, the
total weight decrease in the branch of delete(vt1) is
at least (w5−w4 +w3 + 2m10). As a result, we get the
following branching vector:

(1− w5′ + w3 − w3′ , 1− w4 + w3 + 2m10) . (34)

c-13. There exist vertices v ∈ Vu5 and t1 ∈
NU (v;Vu4) (see Figure 19): We branch on edge vt1.

t3

t4

t5

t8

v

t1

t2

e

t6 t7

(a) force(vt1) in c-13 (b) delete(vt1) in c-13

t3

t4

t5

t8

v

t1

t2

e

t6 t7

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 19: Illustration of branching rule c-13, where
vertex v ∈ Vu5 and vertex t1 ∈ NU (v;Vu4).

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation. So, the weight of
vertex v decreases by ∆5, and the weight of vertex t1
decreases by ∆4. Thus, the total weight decrease in the
branch of force(vt1) is at least (w5 −w5′ +w4 −w4′).
In the branch of delete(vt1), edge vt1 will be deleted
from G′ by the branching operation. So, the weight of
vertex v decreases by ∆5−4, and the weight of vertex t1
decreases by ∆4−3. Thus, the total weight decrease in
the branch of delete(vt1) is at least (w5 −w3). Then,
we get the following branching vector:

(1− w5′ + w4 − w4′ , 1− w3) . (35)

c-14. There exist vertices v ∈ Vu5 and t1 ∈
NU (v;Vu5) (see Figure 20): We branch on edge vt1.

In the branch of force(vt1), edge vt1 will be added
to F ′ by the branching operation. So, both weights of
vertex v and vertex t1 decreases by ∆5, each. Thus, the
total weight decrease in the branch of force(vt1) is at
least (2w5 − 2w5′). In the branch of delete(vt1), edge
vt1 will be deleted from G′ by the branching operation.
So, both weights of vertex v and vertex t1 decreases by
∆5−4, each. Thus, the total weight decrease in the
branch of delete(vt1) is at least (2w5 − 2w4). Then,

t3

t4

t5

t8

v

t1

t2

e

t6
t7

t9

(a) force(vt1) in c-14 (b) delete(vt1) in c-14

t3

t4

t5

t8

v

t1

t2

e

t6
t7

t9

: unforced edges : forced edges

: newly deleted edges : newly forced edges

Figure 20: Illustration of branching rule c-14, where
vertex v ∈ Vu5 and vertex t1 ∈ NU (v;Vu5).

we get the following branching vector:

(2− 2w5′ , 2− 2w4) . (36)

3.3 Switching to TSP4

If none of these 14 cases can be executed, this means
that the graph has no more degree-5 vertices. In that
case, we can switch and use a fast algorithm for TSP
in degree-4 graphs (tsp4(G,F)) to solve the remaining
instances. Xiao and Nagamochi [15, Lemma 3] have
shown how to leverage results obtained by a measure-
and-conquer analysis, and that an algorithm can be
used as a subprocedure, given that we know the re-
spective weight setting mechanism. To get a combi-
nation of total running time bound of these two al-
gorithms, we can use the maximum branching factor
for TSP in degree-4 graphs algorithm and a measure
µ is calculated based on the maximum ratio of vertex
weights for TSP in degree-4 graphs and TSP in degree-
5 graphs [12].

Here we use the O∗ (1.69193n)-time algorithm by
Xiao and Nagamochi [13], where the weights of vertices
in degree-4 graphs are set as follows; w3′ = 0.21968,
w3 = 0.45540, w4′ = 0.59804, and w4 = 1. For this
step, the running time bound is

T (µ) ≤ O
(

1.69193
max

{
0.21968

w
3′

, 0.45540w3
, 0.59804w

4′
, 1
w4

})
.

(37)

3.4 Overall Analysis

The branching factor of each of the branching vectors
from (20) to (37) does not exceed 2.472232. The
tight constraints in the quasiconvex program are in
conditions c-4, c-10, c-11, c-12, c-13 and the switching
constraint. This completes a proof of Theorem 1.

4 Conclusion

In this paper, we have presented an exact algorithm
for TSP in degree-5 graphs. Our algorithm is a simple

2015 ISORA 978-1-78561-086-8 ©2015 IET 57 Luoyang, China, August 21–24, 2015

branching algorithm, following the branch-and-reduce
paradigm, and it operates in space which is polynomial
of the size of an input instance. To the best of our
knowledge, this is the first polynomial space exact al-
gorithm developed specifically for graphs of maximum
degree at most 5, and extends previous algorithms for
degree 3 [11, 14], and degree-4 graphs [13].

We used the measure and conquer method for the
analysis of the running time of the proposed algorithm,
and have obtained an upper bound of O∗(2.4723n),
where n is the number of vertices in a given instance.
This result compares favorably with the polynomial-
space TSP algorithm for general graphs by Gurevich
and Shelah [8], which runs in O∗(4nnlogn)-time.

It remains an open question whether this time bound
can be further improved by a modified analysis tech-
nique, or by a careful re-examination of the branch-
ing rules. Indeed, it would be most interesting to ob-
tain a polynomial-space algorithm with a running time
of O∗(2n) or less, or simply show that this cannot be
achieved.

Acknowledgments

The first author would like to express gratitude to
Technical University of Malaysia Malacca, Malaysia
and Ministry of Higher Education (MOHE) Malaysia
for the scholarship program.

References
[1] Bellman, R. : Combinatorial Processes and

Dynamic Programming. In: Proceeding of the
10th Symposium in Applied Mathematics, Amer.
Math. Soc., Providence, RI, 1960.

[2] Bodlaender, H. L., Cygan M., Kratsch S. and Ned-
erlof J. : Solving Weighted and Counting Vari-
ants of Connectivity Problems Parameterized by
Treewidth Deterministically in Single Exponential
Time. In: CoRR abs/1211.1505, 2012.

[3] Eppstein, D. : Quasiconvex Analysis of Multi-
variate Recurrence Equations for Backtracking Al-
gorithms. In: ACM Transactions on Algorithms,
Vol. 2, No. 4, pp. 492-509, 2006.

[4] Eppstein, D. : The Traveling Salesman Problem
for Cubic Graphs. In: Journal of Graph Algo-
rithms and Application, Vol. 11, No. 1, pp. 61-81,
2007.

[5] Fomin, F. V., Grandoni, F. and Kratsch, D. : A
Measure and Conquer Approach for the Analysis
of Exact Algorithms. In: J. ACM, Vol. 56, No. 5,
Article 25, 2009.

[6] Fomin, F. V. and Kratsch, D. : Exact Exponen-
tial Algorithms. In: Berlin Heidelberg: Springer,
2010.

[7] Gebauer, H. : Finding and Enumerating Hamilton
Cycles in 4-regular Graphs. In: Theoretical Com-
puter Science, Vol. 412, No. 35, pp. 4579-4591,
2011.

[8] Gurevich, Y. and Shelah, S. : Expected Compu-
tation Time for Hamiltonian Path Problem. In:
Siam Journal of Computation, Vol. 16, No. 3, pp.
486-502, 1987.

[9] Held, M. and Karp, R. M. : A Dynamic Pro-
gramming Approach to Sequencing Problems. In:
Journal of the Society for Industrial and Applied
Mathematics, Vol. 10, No. 1, pp. 196-210, 1962.

[10] Iwama, K. and Nakashima, T. : An Improved
Exact Algorithm for Cubic Graph TSP. In: CO-
COON, LNCS 4598, pp. 108-117, 2007.

[11] Liskiewicz, M. and Schuster, M. R. : A New Up-
per Bound for the Traveling Salesman Problem in
Cubic Graphs. In: CoRR abs/1207.4694v2, 2012.

[12] Xiao, M. and Nagamochi, H. : Further Improve-
ment on Maximum Independent Set in Degree-4
Graphs. In: COCOA 2011, LNCS 6831, pp. 163-
178, 2011.

[13] Xiao, M. and Nagamochi, H. : An Improved
Exact Algorithm for TSP in Graphs of Maxi-
mum Degree-4. In: Theory Comput Syst, DOI
10.1007/s00224-015-9612-x, 2015.

[14] Xiao, M. and Nagamochi, H. : An Exact Algo-
rithm for TSP in Degree-3 Graphs via Circuit Pro-
cedure and Amortization on Connectivity Struc-
ture. In: TAMC 2013, LNCS 7876, pp. 96-107,
2013.

[15] Xiao, M. and Nagamochi, H. : Exact Algorithms
for Maximum Independent Set. In: ISAAC 2013.
LNCS 8283, pp. 328-338, 2013.

2015 ISORA 978-1-78561-086-8 ©2015 IET 58 Luoyang, China, August 21–24, 2015

