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Abstract

In this paper, we propose a new version of support
vector machine named biased p-norm support vector
machine (BPSVM) involved in learning from positive
and unlabeled examples. BPSVM treats the classifi-
cation of positive and unlabeled examples as an im-
balanced binary classification problem by giving differ-
ent penalty parameters to positive and unlabeled ex-
amples. Compared with the previous works, BPSVM
can not only improve the performance of classification
but also select relevant features automatically. Fur-
thermore, an effective algorithm for solving our new
model is proposed. BPSVM can be used to solve large
scale problem due to the effectiveness of the new algo-
rithm. Numerical results show BPSVM is effective in
both classification and features selection.

1 Introduction

The traditional classification task is to construct a clas-
sification function based on the labeled training set. D-
ifferent from the traditional classification task, another
special kind of problem, namely, learning from positive
and unlabeled examples (PU learning), gains more and
more attention [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. It deal-
s with such a case that no labeled negative examples
exist in the training set, that is to say, only a few la-
beled positive examples and lots of unlabeled examples
are available, without any information about negative
class.

Currently, there are three kinds of methods for solv-
ing PU learning problem: the first one only use the
labeled positive examples, the second one is based on
two-step strategy and the third one is based on one-
step strategy. For the first one, one-class support vec-
tor machine is the exact example[12]. One-class SVM
tries to learn the final classification hyper plane only
using the positive examples without using any informa-
tion of the unlabeled examples. The numerical results
show that it performs poorer than the learning method-
s that take advantage of the unlabeled examples. Most
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of the popular methods for solving PU learning are
based on two-step strategy [1, 4, 5, 6, 11]. Two-step
methods are iteratively conducted as the following t-
wo steps. Step 1: Identifying the reliable negative or
positive examples from the unlabeled set to enlarge the
original training set. Step 2: Building a set of classi-
fiers by iteratively applying a classification algorithm
and then selecting a good classifier from the set. These
two steps together is an iterative method of increasing
the number of unlabeled examples that are classified as
negative while maintaining the positive examples cor-
rectly classified. [6] points out that if the sample size
is large enough, maximizing the number of unlabeled
examples classified as negative while constraining the
positive examples to be correctly classified will give a
good classifier. The one-step methods convert the PU
learning into an unbalance binary classification prob-
lem [3, 7], such as biased-SVM. Biased-SVM gives big-
ger weights to the positive examples and small weights
to the unlabeled examples which are regarded as neg-
ative examples with noise. The numerical results on
the public benchmark data sets show that the perfor-
mance of biased-SVM is better than most of two-step
methods.

Although there are a lot of methods that can solve
PU learning problem well, none of them consider the
feature selection in PU learning. The benefit of feature
selection is twofold. Firstly, it is meaningful because it
can identify the features that contribute most to clas-
sification. Secondly, it is helpful for solving the clas-
sification problem because it can not only reduce the
dimension of input space and speed up the computation
procedure, but also improve the classification accuracy.
But in PU learning, only positive examples are given,
we have no negative examples. How to do the fea-
ture selection in PU learning? Which features should
we keep? This paper answers these questions by con-
ducting a new version of support vector machine which
can perform feature selection and classification in PU
learning simultaneously. Precisely, given the training
set

T = {(x1, y1), · · · , (xl, yl), xl+1, · · · , xl+m} ∈ (X × Y)l,
(1)

where xj ∈ Rn(j = 1, · · · , l +m), yj = 1, (j = 1, · · · , l).
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There are two things to aim at in this paper. First, to
get a classifier; Second, to select the relevant features
at the same time.

Recently, p-norm (p ∈ [0, 1]) attracts great atten-
tion in the optimization framework, the idea that us-
ing p-norm can find sparse solution is considered in
[13, 14, 15, 16, 17, 18, 19, 20, 21]. Correspondingly,
[17, 18, 19, 20] propose p-norm (0 < p < 1) support
vector machine, which replace the 2-norm penalty by
the p-norm (p ∈ (0, 1)) penalty in the objective func-
tion in the primal problem in the standard linear SVM.
p-norm SVM performs well for classification and fea-
ture selection. In this paper, we propose a new version
of p-norm SVM named biased p-norm SVM (BPSVM)
which gives different weights to the positive and unla-
beled examples. BPSVM is solved approximately by
an iteratively reweighted 2-norm SVM alternating be-
tween estimating normal vector w and redefining the
weights. The numerical experimental results show that
BPSVM is more effective in classification than some
popular methods such as Biased-SVM [22] and the ex-
tended biased SVM (EBSVM). Moreover, BPSVM can
realize feature selection while the other methods can
not.

Now we describe our notation. All vectors are colum-
n vectors unless transposed to a row vector by a super
script >. For a vector x in Rn, [x]i(i = 1, 2, · · · , n)
denotes the i-th component of x. |x| denotes a vector
in Rn of absolute value of the components of x. ‖x‖p
denotes that (|[x]1|p + · · · + |[x]n|p)

1
p . Strictly speak-

ing, ‖x‖p is not a general norm when 0 ≤ p < 1, but
we still follow this term p-norm, because the forms are
same except that the values of p are different. ‖x‖0
is the number of nonzero components of x. For two
vectors x ∈ Rn and y ∈ Rn, (x · y) denotes the inner
product of x and y; x⊗y denotes a vector in Rn whose
ith element is just xiyi.

This paper is organized as follows. In section 2, we
first introduce some previous works related to this pa-
per, then our new method, the biased p-norm support
vector machine for both feature selection and classifica-
tion is proposed. Furthermore, an iterative algorithm
for solving the optimization problem of biased p-norm
support vector machine is also carried out. In section
3, numerical experiments are given to demonstrate the
effectiveness of our method. We conclude this paper in
section 4.

2 Methods

2.1 Related Works

In this section, we briefly introduce several previous
works related to this paper.

2.1.1 2-norm SVM

Consider the standard classification problem first. Giv-
en the training set

T1 = {(x1, y1), · · · , (xl, yl)} ∈ (X × Y)l, (2)

where xj(j = 1, · · · , l) ∈ Rn, yj ∈ {1,−1}.The stan-
dard 2-norm SVM seeks an optimal separating hyper-
plane that maximizes the margin between two class-
es and the optimal decision function sgn((w∗ · x) +
b∗) decided by the following optimization problem
[23, 24, 25, 26].

min
w, b, ξ

1

2
‖w‖22 + C

l∑

i=1

ξi , (3)

s.t. yi((w · xi) + b) ≥ 1− ξi , i = 1, · · · , l ,(4)

ξi ≥ 0 , i = 1, · · · , l, (5)

where C is the penalty parameter which can balance
the empirical risk and the confidence interval, ξi is the
slack variables measuring the classification loss of ex-
amples.

2.1.2 The p-norm SVM

The p-norm (0 < p < 1) support vector machines are
proposed by Tan for the feature selection in supervised
binary classification [19, 20]. The p-norm SVM re-
places the 2-norm penalty by the p-norm (0 < p < 1)
penalty in the objective function in the primal problem
in the standard 2-norm SVM:

min
w, b, ξ

‖w‖pp + C

l∑

i=1

ξi , (6)

s.t. yi((w · xi) + b) ≥ 1− ξi , i = 1, · · · , l ,(7)

ξi ≥ 0 , i = 1, · · · , l. (8)

The numerical experimental results show that the p-
norm SVM is more effective in feature selection than
some popular methods such as 1 -norm SVM and 0-
norm SVM.

2.1.3 Biased 2-norm SVM

Now, we focus on the PU learning problems with the
training set (1). Biased 2-norm SVM (BSVM) is a one-
step method by converting the classification of positive
and unlabeled examples to an imbalanced binary clas-
sification, supposing that the unlabeled examples in (1)
are negative examples, i.e. the labels of xl+1, · · · , xl+m
in (1) are supposed to be -1. The classifier is conducted
by giving appropriate weights to the positive examples
error and negative examples error respectively:

min
w, b, ξ

1

2
‖w‖2 + C1

l∑

i=1

ξi + C2

l+m∑

i=l+1

ξi , (9)

s.t. yi((w · xi) + b) ≥ 1− ξi , i = 1, · · · , l +m ,(10)

ξi ≥ 0 , i = 1, · · · , l +m , (11)

where C1 and C2are the penalty factors of misclassifi-
cation for positive and unlabeled example sets respec-
tively. Usually, C1 is larger than C2. ξi, i = 1, · · · , l+m
are slack variables.
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2.2 New methods

In this section, our new methods are introduced in de-
tail including the optimization problem of biased p-
norm SVM, the solving algorithm for the optimization
problem and the final classification algorithm for the
classification of positive and unlabeled examples.

2.2.1 Optimization Problem

We now present the biased p-norm support vector ma-
chine (BPSVM) formulation of the problem. BPSVM
is an embedded feature selection method in which
training data are given to a learning machine. BPSVM
returns a predictor and a subset of features on which
it performs predictions. In fact, feature selection is
performed in the process of learning.

For the PU learning problem, [7] indicates that if
the sample size is large enough, minimizing the num-
ber of unlabeled examples classified as positive while
constraining the positive examples to be correctly clas-
sified will give a good classifier. Following this idea
and the motivation of feature selection, we propose the
following biased p-norm SVM (no error for positive ex-
amples but only for unlabeled examples).

min
w, b, ξ

F (w, b, ξ) = ‖w‖pp + C

l+m∑

i=l+1

ξi , (12)

s.t. yi((w · xi) + b) ≥ 1, i = 1, · · · , l, (13)

yi((w · xi) + b) ≥ 1− ξi , i = l + 1, · · · , l +m, (14)

ξi ≥ 0 , i = l + 1, · · · , l +m , (15)

where 0 < p < 1 and C > 0 are parameters. While,
the positive examples may contain some errors in prac-
tice. Thus, we allow error in the positive examples and
propose the following soft margin version of BPSVM
which uses two parameters C1 and C2 to weight posi-
tive errors and negative errors differently.

min
w, b, ξ

Fp(w, b, ξ) = ‖w‖pp + C1

l∑

i=1

ξi + C2

l+m∑

i=l+1

ξi , (16)

s.t. yi((w · xi) + b) ≥ 1− ξi , i = 1, 2, · · · , l +m , (17)

ξi ≥ 0 , i = l + 1, · · · , l +m . (18)

C1 and C2 can be adjusted to achieve our objective.
Intuitively, we give a big value for C1 and a small value
for C2 because the unlabeled set, which is assumed to
be negative, also contains positive data.

We now give the geometric interpretation of the
BPSVM. The first term ‖w‖pp(0 < p < 1) in the ob-
jective function of problem (16-18) is the regularizer
that can control the sparsity of the final classification
hyperplane. The second and the third term of the ob-
jective function of problem (16-18) minimize the sum of
error variables, which attempts to over-fit the training
examples.

Note that, its very difficult to find the global solution
of problem (16-18) because its objective function is nei-

ther convex nor differentiable. This will be considered
seriously in the following section.

2.2.2 Algorithm for Solving Problem (16-18)

Although the objective function of problem (16-18) is
composed of a concave term ‖w‖pp (0 < p < 1) and a

convex term C1

∑l
i=1 ξi + C2

∑l+m
i=l+1 ξi, which can be

regarded as a difference between two convex functions,
it can’t be solved by CCCP because the concave term
is not differentiable. By the idea of CCCP , we propose
a new algorithm which is an iterative process.

At the k-th iteration, denote the current (w, b, ξ) es-
timate by (w(k), b(k), ξ(k)), respectively, and then set-
ting (w(k+1), b(k+1), ξ(k+1)) as the solution to the fol-
lowing weighted biased SVM:

min
w, b, ξ

1

2
‖β(k+1) ⊗ w‖2 + C1

l∑

i=1

ξi + C2

l+m∑

i=l+1

ξi , (19)

s.t. yi((w · xi) + b) ≥ 1− ξi , i = 1, · · · , l +m , (20)

ξi ≥ 0 , i = 1, · · · , l +m , (21)

where β(k+1) = (β
(k+1)
1 , · · · , β(k+1)

n )> is the weight
vector and satisfies that:

∇Fp(w(k), b(k), ξ(k)) = ∇F2(w(k), b(k), ξ(k)), (22)

F2(w(k), b(k), ξ(k)) is the objective function of problem

(19-21). It is easy to have β
(k+1)
i = p|[w(k)]i + ε|p−2,

where ε > 0 is to guarantee that β
(k+1)
i is well defined,

i = 1, 2, · · · , n.

Based on the above idea, we propose the following
solving algorithm for the problem (16)-(18).

Algorithm1: Solving the problem (16)-(18)

(1) Given C1 > 0, C2 > 0 and p(p ∈ (0, 1)), start
with a random β(0) and let k = 1;

(2) Solve the weighted optimization problem (19)-
(21)and get the solution (w(k), b(k), ξ(k));

(3) Terminate on convergence or where k attains a
specified maximum number of iteration Kmax. Other-
wise, set k = k + 1 and update the weights for each
i = 1, 2, · · · , n,

β
(k+1)
i = p|[w(k)]i + ε|p−2, i = 1, · · · , n

and go to step 2.

Note that, the optimization problem solved in step
(2) can be converted to a standard 2-norm biased SVM,
which assures that it can be solved by the well known
software easily. Thus, we can apply Algorithm 1 to
solve large-scale problems.

2.2.3 Biased p-norm Support Vector Classifi-
cation (BPSVC)

Because p-norm can induce the sparse solution, there
will be many components which are as closed as ze-
ro, we can eliminate these components and realize the
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feature selection. The new algorithm for classification
and feature selection in PU learning is established as
follows:

Algorithm 2:BPSVC

(1) Given the parameters C1 > 0, C2 > 0, p(0 < p <
1) and a very small number ε > 0; using the set given
by (1), construct the optimization problem (16)-(18);

(2) Using the Algorithm 1 to get the local optimal
solution (w∗, b∗, ξ∗) to (16)-(18);

(3) Select the feature index set: F ′ = {i|[w∗]i| >
ε, i = 1, · · · , n};

(4) Construct the decision function f(x) = sgn((w̃∗ ·
x̃)+ b∗), where w̃∗ are composed by the components in
the F ′ of w∗ and the components of x̃ are also corre-
sponding to components in the feature set F ′ of w∗.

In the following section, our experiments are con-
ducted according to the Algorithm 2.

3 Results

The numerical experiment and results on several real
data sets are carried out in this section.

3.1 Experiment Setup

Datasets In this section, some experiments on Reuters
corpus [28] and Phospho.ELM (version 1009) are con-
ducted. For Reuters corpus the top ten popular cate-
gories are used. Each category is employed as the posi-
tive class, and the rest as the negative class. This gives
us 10 data sets. Phosphorylation data contains a col-
lection of experimentally verified serine (S), threonine
(T), and tyrosine (Y) specific phosphorylation sites in
eukaryotic proteins. The entries provide the informa-
tion about the phosphorylated proteins and the exact
positions of the known phosphorylated residues, which
are catalyzed by a given kinase. We consider four com-
mon kinase: CDK1, CDK2, CK2 and CDK. Therefore,
we have four data sets. The statistics of all data sets
are shown in Table 1.

Preprocessing For each dataset, 30% of the docu-
ments are randomly selected as test documents. The
remaining (70%) are used to create training sets as fol-
lows: δ percent of the documents from the positive
class is first selected as the positive set P. The rest
of the positive documents and negative documents are
used as unlabeled set U. For all data sets, we range δ
from 30%,70% (0.3,0.7)

In the experiment, we would compare our method
with 2-norm biased SVM (BSVM) and the extend-
ed 2-norm biased SVM (EBSVM). The parameters
in the optimization problem are optimized on train-
ing sets. The range of C1 and C2 is chosen from
{2−5, 2−4, · · · , 25}, p in biased p-norm SVM (BPSVM)
is chosen from 0.1 to 0.9

Evaluation Criteria F -score on the positive class
is used to evaluate the performance of the classifiers on
the test sets. F -score takes into account of both recall

and precision and is defined as:

F =
2pr

p+ r
,

where r = TP/(TP + FN) , p = TP/(TP + FP ), TP
and FP represent the number of true positive and false
positive examples respectively. FN is the number of
false negative examples.

F -score cannot be calculated on the validation set
during the training process because there are no nega-
tive examples. An approximate method [6] is used to
evaluate the performance by

F =
r2P

Prob(f(x) > 0)
,

where x is an input vector, Prob(f(x) > 0) is the prob-
ability of this input example x classified as positive, rP
is the recall for positive set P in the validation set. The
approximate F is used to select the optimal parameters
during the training process.

3.2 Experimental Results

Results on Reuters Collection

The classification performance is shown in Table 2-
Table 4. We can see that BPSVM performs better.
For each data set with different δ, most of the mean of
average F scores of BPSVM is higher than the other
two methods. Table 3 shows the average F scores on
each data set with all δ. It is clearly that BPSVM
is the best, because it performs best on seven data
sets. Table 4 shows the average number of selected
features, the most is 779 and the least is 145. While,
the other two methods use all the featurese and can’t
select any feature. All in all, BPSVM is the best one,
because it conducts feature selection and classification
simultaneously. Furthermore, the accuracy of BPSVM
is better than the other two methods in most cases
and it is comparable with the other two methods when
the accuracy of BPSVM is lower than the other two
methods.

Results on Phosphorylation Data Sets

Table 5 shows the average F scores on 4 data set-
s. All methods performs worse on the four data sets,
all of the average F scores are lower than 0.5. This
results indicate that the problem of sites prediction
is not suitable to be seeing as a PU learning prob-
lem. Since BPSVC can solve the imbalanced binary
classification problem, we also conduct the numerical
experiments on the pure data sets by comparing en-
semble SVM (ESVM), BSVM and BPSVC. To com-
pare their performance, the F -score in binary classi-
fication is used and is defined as F = 2SnSp

Sn+Sp , where

Sn = TP
TP+FN ,Sp = TN

TN+FP . The results are shown
in Table 6. We can see that for the imbalanced binary
classification problem, BPSVC performs best. BPSVC
achieves the highest F scores and can select relevant
features. While, SVM and BSVM can not select rele-
vant features..
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4 Conclusion

In this paper, we propose the biased p-norm sup-
port vector machine (BPSVM), which is an entirely
new feature selection method for PU learning prob-
lem. BPSVM gives larger weights to positive examples
and smaller weights to unlabeled examples. The effec-
tive algorithm for solving BPSVM is also conducted.
Numerical results show that BPSVM performs better
compared with other PU learning methods. In addi-
tion, BPSVM can be used in unbalanced binary clas-
sification problem and it performs a little better than
other methods.
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Table 1: Statistics of Data sets

Data set l+/l− No.of features Data set l+/l− No.of features
R1 799/18407 26214 R8 990/17856 26214
R2 973/17873 26214 R9 996/17850 26214
R3 985/17861 26214 R10 994/17852 26214
R4 982/17864 26214 CDK 93/2353 273
R5 963/17883 26214 CDK1 144/5361 273
R6 988/17858 26214 CDK2 67/1763 273
R7 975/17871 26214 CK2 215/4710 273

The abbreviations R1, R2, · · · , R10 refer to ten data sets in Reuters corpus, l+ is the number of positive
examples, l− is the number of unlabeled or negative examples

Table 2: Average F Scores on Reuters collection

Class EBSVM BSVM BPSVM EBSVM BSVM BPSVM
0.7 0.3

R1 0.984 0.981 0.969 0.983 0.959 0.963
R2 0.957 0.952 0.950 0.939 0.897 0.922
R3 0.934 0.904 0.930 0.857 0.814 0.859
R4 0.915 0.915 0.929 0.882 0.779 0.871
R5 0.863 0.863 0.865 0.759 0.792 0.842
R6 0.854 0.854 0.903 0.836 0.814 0.853
R7 0.846 0.794 0.909 0.576 0.592 0.698
R8 0.956 0.956 0.971 0.955 0.763 0.958
R9 0.985 0.937 0.985 0.937 0.802 0.985
R10 0.909 0.909 0.837 0.782 0.749 0.837

Mean 0.921 0.907 0.925 0.850 0.796 0.879

The abbreviations R1, R2, · · · , R10 refer to ten data sets in Reuters corpus, EBSVM is the extended biased
SVM, BSVM is biased SVM and BPSVM is the biased p-norm SVM.

Table 3: Average over-all F Scores on Reuters collection

Class EBSVM BSVM BPSVM Class EBSVM BSVM BPSVM
R1 0.984 0.970 0.966 R6 0.845 0.834 0.878
R2 0.948 0.925 0.936 R7 0.711 0.693 0.803
R3 0.895 0.859 0.895 R8 0.956 0.860 0.965
R4 0.899 0.847 0.900 R9 0.961 0.870 0.985
R5 0.811 0.828 0.854 R10 0.846 0.829 0.837

The abbreviations R1, R2, · · · , R10 refer to ten data sets in Reuters corpus, EBSVM is the extended biased
SVM, BSVM is biased SVM and BPSVM is the biased p-norm SVM.

Table 4: Average Selected features by BPSVM on Reuters collection

Class R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Features 561 442.2 392.2 267 779.7 552.5 644 289.5 305 145

The abbreviations R1, R2, · · · , R10 refer to ten data sets in Reuters corpus.
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Table 5: Average F Scores on Phosphorylation data sets

Data CDK CDK1 CDK2 CK2
0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

ESVM 0.450 0.461 0.381 0.381 0.351 0.391 0.392 0.395
BSVM 0.446 0.415 0.364 0.368 0.408 0.376 0.398 0.374

BPSVM 0.425 0.473 0.368 0.391 0.336 0.383 0.353 0.331

The abbreviation ESVM is the ensemble SVM, BSVM is biased SVM and BPSVM is the biased p-norm SVM.

Table 6: Performance on Pure data sets

Data CDK CDK1 CDK2 CK2
F No.features F No.features 0F No.features F No.features

ESVM 0.921 all 0.850 all 0.926 all 0.836 all
BSVM 0.934 all 0.950 all 0.941 all 0.842 all

BPSVM 0.941 34 0.954 147 0.948 18 0.872 185

The abbreviation ESVM is the ensemble SVM, BSVM is biased SVM and BPSVM is the biased p-norm SVM.
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