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1. Introduction

€ What is a callable financial commodity?

— set In the derivative internally
— possess the right of cancellation

€ Many commodities have been developed to

— access specific market segments

— meet specific needs of various investors

— extract and decompose risk—return profiles
of derivatives



€ Two players in the risk game

Player 1 : issuer or firm (seller)
Player II : investor (buyer)

€ Financial commodities issued by institutions
— to meet investment objectives of clients

callable for the seller

__putable for the buyer



€ Stochastic game as a coupled optimal
stopping problem

— the seller wishes to minimize the issuing cost,
seek for an optimal call time (stopping time)

— the buyer tries to maximize the payoff function
seek for an optimal exercise time (stopping time)

a

Non—cooperative Dynkin game

(Coupled stopping game)



€ Many methodologies and techniques have been
developed for valuing the financial commodities

€@ Transformation of the optimal stopping problem
into the free boundary problem

& Deriving the optimal stopping boundaries

a

A saddle point provides optimal stopping rules and
equals the value of the financial commodity



2. Model Formulation

Trading periods : [0,7T] or [0, )
Riskless asset : B(t)
dB(t) = r(t)B(t)dt, B(0) >0, r(t) >0,
(2.1)
Risk asset : X ()
dX(t) = (r(t) — 0(t)) X (t)dt + w(t) X (t)dWr,
(2.2)
where x(-) > 0 is the volatility and W; is the

standard Brownian motion under the risk neu-
tral probability P.



f

Stopping times | 0 ( player 1)
<

T ( player 11 )

The payoff:
Rt(g} T) _ /t‘(?‘f’\f ef:ﬁ"" ?’(ﬁ)duC(S)dS —|— f((]', X(G))l{g.(q—}

+ g(T?X(T))l{TSO'<T} + h(X(T))l{::rA’rzT}
(2.3)
Assumption 2.1
1) The payoff functions f(¢,z), g(¢,z) and
h(x) are monotone in z.
2) The inequalities among f,¢g and h hold
as follows: For each ¢

flt,x) > g(t,xz) > h(x) V2> 0.



Remarks 2.2

1) If o = 7, the buyer has priority over the
seller. When o A = min(o,7) = T, the
payoff is assumed to be A(X(T)).

2) Ro(o, 7)has the lower and upper bounds.
3) If it is optimal for the seller not to cancel
before the maturity, callable securities may
be reduced to the usual non-callable one
which is an American type.

4) If it is optimal for both the seller and the
buyer not to exercise before the maturity,
securities reduce to the European type.

5) Even if it is optimal for the buyer not to
exercise before the maturity, the seller still
faces the problem of selecting an optimal
stopping time o.



Theorem 2.3

For X(t) = x, define

V(t,z) = ess inf esssup E
UEﬁ,T TEﬁ,T

e ftUATT(S)dSRt(O', ’T)|X(t) — .GU]

nd (2.4)
: = —IUATT(S)dS
V(t,r) = esssupess inf E e Jt Ri(o, 7)|X(t) = x| .
TE€TT o€Ti T 5 E
Then, this game possesses the value which ( ' )
IS given by
V(t,z) =V(t,z) =V(t,z), 0<t<T. (2.6)

Moreover, the optimal stopping times for
the seller and the buyer are

5 = inf{azt: V(o X(0) = £, X(o0) + [ Uef"(“”“c(s)ds}/\:r,

7 = inf {7‘ >t: V(r,X(1)) = g(r, X(1)) + /T efr(u)duc(s)ds} ANT.
(2.7)



Corollary 2.4
The value function V(t,x) satisfies

t t

g(t,z) +/ ef; r(u)duc(s)ds
0

< V(t,z)

t t
< f(t,x) —I—/ efs r(u)duc(s)ds, V(t,z) €[0,T] xRT.
0

Theorem 2.5 (Perpetual financial commodity)
In addition to Assumption 2.1, if the inequality

t t
tlim (f(t,a:) -I—/ efs T(u)du’c(s)ds) < M, Vz >0 (2.8)
—00 0

holds, then there exists the limit V(x) = limio 00 V (&, )
which satisfies equation (2.6) in Theorem 2.3.



Corollary 2.6

If §(t) = 0 and ¢g(t,x) is convex and decreasing in x
for each t, then

V(t,2) = essinf I ) T p o TX () = 2
oc t T
that is, the coupled optimal stopping problem above
iIn Theorem 2.3 can be reduced to the one only for
the issuer (player I).



3. Some Examples

A European call option
K : exercise price

c(t) = 0, f(t,z) = o0, g(t,z) =0, h(z) = max(z — K,0) = (z — K)T
Vit,e) = ze T Do (T —t,2,K)) — Ke "I Do(d7 (T —t, 2, K))
log(a/y) + (r — 6 + 3kt

NG

e Lower bound: V(t,z) >0

di(t,z,y) =

B American put option

C(t) — 07 f(t,ﬂ?) — 00, g(tam) — h(ﬂ?) — (K - CB)+,
V(t,2) sup B e "D Ry (00, )| X (t) = 4

e Lower and upper bounds:

(K —2)T <V(t,z) <K



Game put option
(Kifer(2000), Suzuki and Sawaki(2007))
6 =20, p>0: penalty

c(t) = 0, f(t,x) = (K —x)t +p, gt,z) = h(z) = (K —2)7,
V(t,z) = supinfE e 7" DRo(o,7)|X(t) =

= infsup £ —e_"("AT_t)Ro(J,TNX(t) = :13-

T

e Lower and upper bounds:
(K—o)t <V(t,2) <(K-2)t+p

e [ he optimal stopping region for the issuer:
Var(t, x) :the price of American put
= sup{t > 0| p < Vr(t, K)}

s — 4 i} telo,r]
Tl te T
If p>V®(t,K), t* =0, that is, S; = ¢.

e The optimal region for the investor: S; = [0, x¢]
xtp optimal boundary of American put

¥ < xy < K and |II’T%:U,5—K
t—



T heorem 3.1
VeP(t,x) : the price of European put
V(t,z) can be decomposed as follows;

V(t,.ﬁl}) — Vep(tax) _l_ €(t,5€) o d(t,ilj‘),

where

e(t,z)

I t
TK/ e~ (s )Cb(dz(s —t,x,x5))ds > 0,
t

d(t, ) E[/: e~ (s—t) (g—v(s, K+) — Z—Z(s, K—)) dLE(K)

X

| X(t) = 2| >0.

LY¥(K) : the local time of X; at the level K
in the time interval [0, t]



Corollary 3.2
e®(t,x) :the early exercise premium of the American

put
We obtain
e(t,z) > e"(t,z), t€[0,t7],
e(t,zr) = e"(t,x), t e (t*,T].
Corollary 3.3

Vil(xz) ¢ the price of perpetual American put

:pj;p . its optimal boundary

p* = VI (K)
For p > p™,

Voe(x) = V() = ’I“K/ e_rtCID(dg(t,:c,xzp))dt.
0
For p < p™,
Vie(z) = V()

dV dV ~ X ot are _
— (E(K—l_)_%(f{_))E[/O e "dLy(K)| X(0) = x| .



D Callable convertible bond (YYagi and Sawaki(2005)(2007))
F :face value; C :call price; z :dilution factor

c(t) = 0, f(t,z) = max(zz,C), g(t,x) = zx,
h(zx) = min(xz, max(zz, F))

e Lower and upper bounds:
ze < V(t,z) < max(zxz, C)

e Optimal stopping boundaries for the issuer:

S = {(t,2)|V(t,z) = max(zz,C)}
:cf = inf{z|z € Sf}
S/ = [xf,00)

e Optimal stopping boundaries for the investor:

S = {t,)|V(t,x) = za}
a:l{f = inf{x|x € Stn}
S = floo

o Letting xf = min(x!,x!!), the continuing region
is given by

Ct — [vaf)



T heorem 3.4
V(t,x) can be written as

V(ta 33) — B(tv CB)_I_Vec(t? $)+p(t7 m)_d(ta ZU),

where B(t,z) is the discount bond value,
Vee(t,z) the price of European call, p(t,x)
the early conversion premium and d(t,x)
the callable discount.



E Installment American call option (Ben(2002))
g .installment rate

c(t)
Rt(Te, Ts)

(X(7e) = K)F 1 oy + (X(T) = K) T r o7y
Te/\Ts
_/t 6?‘(’7'6/\’7'3—8)qu’

V(t,z;q) = esssup B e " NTR (1, 70) | X () =

Te,Tg

e Optimal stopping boundary:

S = {(x)|V(tx; q) =0}
£ = {(t,a)|V(tzq) = (@ — K)T}
Especially, at the maturity the optimal

stopping and exercise boundaries x;, T
are as follows,

xp = K
K —
T = max(r 5 q,K)




T heorem 3.5

ec I —r(u—t) —
V(tziq) = V(@) —q /t e (A7 (u — t, 2, zu))du

T
+/t {5xe_5(u_t)d>(d1|_(u — 1,2, Ty))

~ (K — e DT (u — by, ) b



F European double barrier equity linked bond
U :upper barrier; L :lower barrier

ct) = 0, f(t,x) = oo, g(t,z) =0,
X(Tr) = max X(t), X(T) = OQISHTX(t),
MX(T),X(T)) = Fligmsoy+ Flixmy<vxmsn
. X(T)
+ min (Fv TO)F> 1{X’(T)<U,X’(T)<L}
- F
— —r(T—t) + .
V(t,:c) = E{e (F — W(X(O) - X(T)) 1{X(T)<U}
F
+——(X(0) — X(T))+1{X(T)<U,X(T)>L}|X(t) = x]
X(0) -
F F
= e 7INDp_ Pt — V(¢ L<z<U
e X(O) (’x)-I_X(O) (758)7 ST s U

where V is the price of European up-and-out put
option with the strike price X(0) and V one of Eu-
ropean double barrier knock-out put option with
strike price X(0).



G

PRDC
Let X(¢t) be the exchange rate which fol-
lows the stochastic differential equation

dX(t) = (r —rp) X (t)dt + s X (t)dW,

where r is the domestic riskless interest
rate and T the riskless rate of the counter
part.

c(t) = ¢ f(t,z)= OO:I_ g(t,z) =0,
. X(T
MX(T)) = (“% —5> Fliz<uy

where «, § > 0.



4. Analytical Properties

Assumption 4.1

f(t,x), g(t,z) and h(x) are non-increasing in t and
monotone convex in xz and c¢(t) = 0. Define the

stopping regions for player I and II, respectively, by

S {(t, )|V (t,x) = f(t,2)}
s = {t)|V(t,z) = g(t,z)}

and the continuing region is
C=A{(t,z)|lg(t,z) < V(t,z) < f(t,z)}.

S! and S are the truncations of S and S at time
L.




Lemma 4.2
1)V (t,x) is non-increasing in ¢t for each z,
2)YV(t,z) is monotone convex in x for each
t.
3)If (t,2) € C, then LV = 0, where

1 5 5 07 o 0

=" L (r—§ L9,
S g T dr

Lemma 4.3

If f(¢t,2) and g(t,x) are monotone and con-
vex in z, then S/ and S/! are connected
sets, that is, the stopping region never pos-
sesses the detached region.



Lemma 4.4

If the issuer does not hold the call right,
it IS reduced to be American type. Let
Ve (t,x) beits price and, V% (x) the value of
the perpetual financial commodity. We have
DV (t,xz) <Vt z) <V (2),

2)s{' 2 8¢ 2 SE.



Theorem 4.5
Let p; = f(t,2) — g(t,x), the difference de-
pending only on ¢t and assume that p; IS
non-increasing in t and put K; = arg ming (¢, x).
Define

t* =sup{t > 0| pr < V(t,Ks)}
If ¢t € [0,t*],the optimal call region for the
issuer is S{ = {K;}.
If t € (t*,T], S{ = ¢.



9. Numerical Examples

(A) Penalty costs are discounted

Game put options which pay off functions are

max{K —z,0} 4+ e "p

f(t, )

and

g(t,x)

max{K — z,0}.



Parameters:

K =100, r=0.05, =004, k=03, T =1
p= 1,510, respectively
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Optimal boundaries of the seller and the buyer;

Parameters:
K =100, r =0.05, § =0.04, K = 0.3, p= 10
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(B) Penalty costs are constant (no discounted)

r=0,1, k=03, K =100

10 T T T T T T T T E0 T T
""""""""""""""""""""""""""""" p = 1 —
as p=3 —
o p:6_
40 p:9_'
BT American put - - - | L 7
< Game put — %
2 T 3 '
=7 >
= = 35 1
] o
a 5T & 20 .
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= N — S
3 L L L 1 1 1 1 1 o 1 1 e - 1 B e
o L 2 3 4 H] B T B 9 &0 &0 100 120 140
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Fig. 1: Behavior of the callable American put Fig. 2: Behavior of the callable American put

price when the penalty cost changes. price when the initial asset price changes.
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Fig. 3: Comparison of the callable American

put price(P = 1), corresponding American and

European put price.
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Fig. 4: Optimal exercise boundaries of the

callable American put for the seller and the

buyer when P= 5 and of the American put.



Figure Optimal strategies of the seller and the buyer
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p>VYUK,0) =8.337, thent* =0

V(S,t) T asp?t
p=gq>VK,0), V(S,t)=VS,1).

t € [0,t*], S = {K}, and zP > z¥
te (t*,T], S = ¢, and 2P =z



6. Conclusion

€ Callable security can provide the upper bound for the seller’ s
cost

€9 Putable security may guarantee the lower bound for the
buyer’ s profit — maximum loss

— maximum gain
@ The value of such securities lies in between them
€ Optimal boundaries for the seller may vanish for P large enough
€ What is your risk capacity ?

€ New financial commodities can be designed with risk aspects
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