Optimization with Max-Min Fuzzy Relational Equations

Shu-Cherng Fang

Industrial Engineering and Operations Research North Carolina State University Raleigh, NC 27695-7906, U.S.A www.ie.ncsu.edu/fangroup

> October 31, 2008 ISORA'08 at Lijiang, China Co-author: Pingke Li

> > NC STATE UNIVERSITY

Problem Facing

- Problem(P) Minimize f(x)s.t. $A \circ x = b$ $x \in [0,1]^n$
 - where $f: \mathbb{R}^n \to \mathbb{R}$ is a function, $A = (a_{ij})_{m \times n} \in [0,1]^{mn}$, $b = (b_i)_{m \times 1} \in [0,1]^m$,
- "°" is a matrix operation replacing "product" by "minimum" and "addition" by "maximum", i.e.,

$$\max_{1 \le j \le n} \min(a_{ij}, x_j) = b_i, \text{ for } i = 1, ..., m.$$

Examples

- a_{ij} : bandwidth in field from server *j* to user *i*
- b_i : bandwidth required by user *i*
- x_i : capacity of server *j*

Consider

 $\max_{1 \le j \le n} \min (a_{ij}, x_j) = b_i, \text{ for } i = 1, ..., m.$

Examples

2. Fuzzy control / diagnosis / knowledge system

 a_{ij} : degree of input *j* relating to output *i*

- b_i : degree of output at state *i* (symptom)
- x_i : degree of input at state *j* (cause)

A fuzzy system is usually characterized by

$$\max_{1 \le j \le n} t(a_{ij}, x_j) = b_i, \ \forall i, \text{ or}$$
$$\min_{1 \le j \le n} s(a_{ij}, x_j) = b_i, \ \forall i,$$

where "t" and "s" are triangular norms.

Triangular Norms

[Schweizer B. and Sklar A. (1961), "Associative functions and statistical triangle inequalities", Mathematical Debrecen 8, 169-186.]

t-norm:

- $t:[0,1]\times[0,1]\rightarrow[0,1]$ such that
- 1) t(x, y) = t(y, x) (commutative)
- 2) t(x,t(y,z)) = t(t(x,y),z) (associative)
- 3) $t(x, y) \le t(x, z)$, if $y \le z$ (monotonically nondecreasing)
- 4) t(x,0) = 0 and t(x,1) = x (boundary condition).

s-norm (t co-norm): $s:[0,1] \times [0,1] \rightarrow [0,1]$ such that $s(x,y) = 1 - t(1 - x, 1 - y) \quad \forall x, y \in [0,1]$

Triangular Norms

$$t_{w}(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)) = \begin{cases} \min\{\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)\} & \text{if } \max\{\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)\} = 1 \\ 0, & \text{otherwise} & (\text{drastic product}) \end{cases}$$
$$s_{w}(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)) = \begin{cases} \max\{\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)\} & \text{if } \min\{\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)\} = 0 \\ 1, & \text{otherwise} & (\text{drastic sum}) \end{cases}$$

$$t_{1}(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)) = \max\{0, \mu_{\tilde{A}}(x) + \mu_{\tilde{B}}(x) - 1\}$$

$$s_{1}(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)) = \min\{1, \mu_{\tilde{A}}(x) + \mu_{\tilde{B}}(x)\}$$

bounded difference bounded sum

 $t_{1.5}(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)) = \frac{\mu_{\tilde{A}}(x)\cdot\mu_{\tilde{B}}(x)}{2-[\mu_{\tilde{A}}(x)+\mu_{\tilde{B}}(x)-\mu_{\tilde{A}}(x)\cdot\mu_{\tilde{B}}(x)]}$ Einstein product $s_{1.5}(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)) = \frac{\mu_{\tilde{A}}(x)+\mu_{\tilde{B}}(x)}{1+\mu_{\tilde{A}}(x)\cdot\mu_{\tilde{B}}(x)}$ Einstein sum

Triangular Norms

$$t_{2}(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)) = \mu_{\tilde{A}}(x) \cdot \mu_{\tilde{B}}(x)$$

$$s_{2}(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)) = \mu_{\tilde{A}}(x) + \mu_{\tilde{B}}(x) - \mu_{\tilde{A}}(x) \cdot \mu_{\tilde{B}}(x)$$

algebraic product algebraic sum

$$t_{2.5}(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)) = \frac{\mu_{\tilde{A}}(x)\cdot\mu_{\tilde{B}}(x)}{\mu_{\tilde{A}}(x)+\mu_{\tilde{B}}(x)-\mu_{\tilde{A}}(x)\cdot\mu_{\tilde{B}}(x)}$$
Hamacher product
$$s_{2.5}(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(x)) = \frac{\mu_{\tilde{A}}(x)+\mu_{\tilde{B}}(x)-2\mu_{\tilde{A}}(x)\cdot\mu_{\tilde{B}}(x)}{1-\mu_{\tilde{A}}(x)\cdot\mu_{\tilde{B}}(x)}$$
Hamacher sum

$$t_{3}(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}$$
minimum
$$s_{3}(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}$$
maximum

 $t_w \le \dots \le t_1 \dots \le t_2 \dots \le t_3 = \min \ \le s_3 = \max \dots \le s_2 \dots \le s_1 \dots \le s_w$

Fuzzy Relational Equations

Given

A = (
$$a_{ij}$$
) ∈ [0,1]^{*m*×*n*},
b = (b_1 ,..., b_m) ∈ [0,1]^{*m*},

find

 $x = (x_1, \dots, x_n) \in [0,1]^n \quad \text{such that}$ (max-t-norm composition $A \circ x = b$) $\max_{1 \le j \le n} t(a_{ij}, x_j) = b_i, \forall i.$ (min-s-norm composition $A \circ x = b$) $\min_{1 \le j \le n} s(a_{ij}, x_j) = b_i, \forall i.$

The solution set is denoted by $\sum (A, b)$.

STATE UNIVERSITY

Difficulties in Solving Problem (P)

1. Algebraically, neither "maximum" nor "minimum" operations has an inverse operation.

$$0.2x + 0.3 = 0.5 \implies x = \frac{0.5 - 0.3}{0.2} = 1$$
$$\max(0.3, \min(0.2, x)) = 0.5 \implies x = ?$$

2. Geometrically, the solution set $\sum (A, b)$ is a "combinatorially" generated "non-convex" set.

Solution Set of Max-t Equations

1. Definition: $\hat{x} \in \Sigma(A, b)$ is a maximum solution

if $x \leq \hat{x}$, $\forall x \in \Sigma(A, b)$.

2. Definition : $\check{x} \in \Sigma(A, b)$ is a minimum solution

if
$$x \ge \check{x}, \forall x \in \Sigma(A, b).$$

3. Definition : $\hat{x} \in \Sigma(A, b)$ is a maximal solution

if $x \ge \hat{x}$ implies $x = \hat{x}, \forall x \in \Sigma(A, b)$.

4. <u>Definition</u>: $\check{x} \in \Sigma(A, b)$ is a minimal solution if $x \leq \check{x}$ implies $x = \check{x}$, $\forall x \in \Sigma(A, b)$.

Solution Set of Max-t Equations

• <u>Theorem</u>: For a continuous t-norm, if $\sum (A, b)$ is nonempty, then $\sum (A, b)$ can be completely determined by one maximum and a finite number of minimal solutions.

[Czogala / Drewhiak / Pedrycz (1982), Higashi / Klir (1984), di Nola (1985)]

[Root System]

Characteristics of Solution Sets

• Existence

[di Nola / Sessa / Pedrycz / Sanchez (1989)]

<u>Theorem</u>: For a continuous t - norm, $\Sigma(A,b) \neq \phi$ if and only if it has a maximum solution $\hat{x} = (\hat{x}_1, \dots, \hat{x}_j)$

with
$$\hat{x}_j = \min_{1 \le i \le m} (a_{ij} \ \varphi \ b_i)$$
 where
 $a \ \varphi \ b \equiv \sup \left\{ u \in [0,1] \ | \ t(a,u) \le b \right\}.$

Characteristics of Solution Sets

• Uniqueness

[Sessa S. (1989), "Finite fuzzy relation equations with a unique solution in complete Brouwerian lattices," Fuzzy Sets and Systems 29, 103-113.]

• Complexity

[Wang / Sessa/ di Nola/ Pedrycz (1984), "How many lower solutions does a fuzzy relation have?," BUSEFAL 18, 67-74.]

upper bound = n^m

Characteristics of Solution Sets

• <u>Theorem</u>: For a continuous s-norm, if $\Sigma(A, b)$ is nonempty, then $\Sigma(A, b)$ is completely determined by one minimum and a finite number of maximal solutions.

[Crown System]

Problem Facing

• Problem(P) Minimize f(x)s.t. $A \circ x = b$ $x \in [0,1]^m$

A nonconvex optimization problem over a region defined by a combinatorial number of vertices.

Optimization with Fuzzy Relation Equations

• $f(x) = c^T x$ linear function

[Fang / Li (1999), "Solving fuzzy relation equations with a linear objective function, Fuzzy Sets and Systems 103, 107-113.]

Lemma1: If
$$c_j \leq 0$$
 for all j , then \hat{x} is an optimal solution.

<u>Lemma2</u>: If $c_j \ge 0$ for all j, then one of the minimal solutions is an optimal solution.

Optimization with Fuzzy Relation Equations

Theorem : Let

$$c_{j}' = \begin{cases} c_{j} & \text{if } c_{j} \ge 0 \\ 0 & \text{if } c_{j} < 0 \end{cases} \quad \text{and} \quad x^{*} = \begin{cases} \check{x}_{j}^{*} & \text{if } c_{j} \ge 0 \\ \hat{x}_{j} & \text{if } c_{j} < 0 \end{cases},$$

where \check{x}^* solves the problem with $f(x) = (c')^T x$, then x^* is an optimal solution.

0-1 integer programming with a branch-and-bound solution technique.

Optimization with Fuzzy Relational Equations

- Extensions
 - 1. Objective function f(x)
 - linear fractional
 - geometric
 - general nonlinear
 - vector-valued
 - "max-t" or "min-s" operated

2. Constraints

- interval-valued
- "max-t" or "min-s" operated
- 3. Latticized optimization on the unit interval.

Major Results

<u>Theorem 1</u>: Let $A \circ x = b$ be a consistent system of max-min (max-t) equations with a maximum solution \hat{x} .

The Problem (P) can be reduced to

Minimize f(x)s. t. $Qu \ge e^m$ $Gu \leq e^n$ (MIP) $V_{\mathcal{U}} < x < \hat{x}$ $u \in \{0,1\}^r$ where Q is m-by-r, G is n-by-r, V is n-by-r, e^{m} , e^{n} are vectors of all ones, and r is an integer (up to $m \times n$).

Major Results

<u>Theorem 2</u>: As in Theorem 1, if f(x) is linear, fractional linear, or monotone in each variable, then the Problem (P) can be further reduced to a 0-1 integer programming problem.

In particular, when the t-norm is Archimedean and f(x) is separable and monotone in each variable, then Problem (P) is equivalent to a "set covering problem":

(SCP)
Minimize
$$\sum_{j} \left[f_{j}(\hat{x}_{j}) - f_{j}(0) \right] u_{j}$$
(SCP)
s. t. $Qu \ge e^{m}$
 $u \in \{0,1\}^{n}$.

Major Results

When the t-norm is non-Archimedean, then Problem (P) is equivalent to a "constrained set covering problem".

Corollary: Problem (P) is in general NP-hard.

<u>Theorem 3</u>: In case $f(x) = \max_{j \in N} f_j(x_j)$ with $f_j(\cdot)$ being continuous and monotone for each j, then Problem (P) can be solved in polynomial time.

Challenges Remain

- Efficient solution procedures to generate $\sum(A, b)$.
- Efficient algorithms for optimization problems with relational equation constraints.
- Efficient algorithms to generate an approximate solution of $\sum(A, b)$, i.e.,

Minimize
$$dist(A \circ x, b)$$

s. t. $x \in [0,1]^n$.

References

- 1. Li, P., Fang, S.-C., On the resolution and optimization of a system of fuzzy relational equations with sup-*T* composition, *Fuzzy Optimization and Decision Making*, 7 (2008) 169-214.
- Li, P., Fang, S.-C., Minimizing a linear fractional function subject to a system of sup-*T* equation with a continuous Archimedean triangular norm, to appear in *Journal of Systems Science and Complexity*.
- 3. Li, P., Fang, S.-C., A survey on fuzzy relational equations, Part I: Classification and solvability, to appear in *Fuzzy Optimization and Decision Making*.
- 4. Li, P., Fang, S.-C., Latticized linear optimization on the unit interval, submitted to *IEEE Transactions on Fuzzy System*.

Thank you! Questions?

<www.ise.ncsu.edu/fangroup> <fang@eos.ncsu.edu>