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Abstract—This paper addresses the bi-objective optimization 

of continuous bio-dissimilation process of glycerol to 1, 3- 

propanediol. A bi-objective optimization model is firstly 

proposed to maximize the production rate of 1, 3-propanediol, 

simultaneously maximize the conversion rate of glycerol and 

ensure the bioprocess is operated under steady-state conditions. 

Then this bi-objective problem can be transformed into a 

sequence of single objective problems by using the weighted-sum 

and normal-boundary intersection methods respectively. Finally, 

these single objective problems are solved by an interior point 

method. The results show that the weighted-sum and normal-

boundary intersection methods can obtain the approximate 

Pareto-optimal set of the proposed bi-objective optimization 

problem. 
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I.  INTRODUCTION 

1, 3-propanediol (1, 3-PD) has a wide range of potential 
applications on a large commercial scale [1]. Among all kinds 
of microbial production of 1, 3-PD, bio-dissimilation of 
glycerol to 1, 3-PD has been studied extensively since 1980s 
due to its relatively high yield and productivity [2]. In recent 
years, significant efforts from biochemical mechanism analysis, 
mathematical modeling, process optimization and robust 
control have been made to improve the dissimilation process of 
glycerol [2-10]. For example, research on the quantitative 
description of the cell growth kinetics of multiple-inhibitions, 
product formation in continuous culture has been made [3-5]. 
The nonlinear kinetic system of fed-batch fermentation was 
investigated in the process of glycerol bio-dissimilation to 1, 3-
propanediol by Klebsiella pneumoniae [6]. A mathematical 
model was established to formulate the continuous culture of 
glycerol to 1, 3-propanediol by Klebsiella pneumoniae [7]. The 
optimal conditions of batch and continuous glycerol 
fermentations by Klebsiella pneumoniae were investigated 
using the volumetric productivity of 1, 3-propanediol as an 
optimization target based on a mathematical model that 
considers the growth kinetics of multiple inhibitions and the 
metabolic overflow of substrate consumption and product 
formation [2]. A robust controller was designed by using the 
bilinear transformation and H∞ mixed sensitivity method for 

bio-dissimilation process of glycerol to 1, 3-propanediol [8]. A 
μ robust control strategy for continuous bio-dissimilation 
process of glycerol to 1, 3-propanediol has been proposed [9]. 
But the multi-objective optimization to this process has not yet 
been addressed.  

The aim of this paper is to address the bi-objective 
optimization of continuous bio-dissimilation process of 
glycerol to 1, 3-propanediol by simultaneously maximizing the 
production rate of 1, 3-propanediol and the conversion rate of 
glycerol. 

II. BI-OBJECTIVE OPTIMIZATION PROBLEM OF 

CONTINUOUS BIO-DISSIMILATION PROCESS OF GLYCEROL 

A. Continuous Bio-dissimilation Process of Glycerol 

The material balance equations of continuous bio-
dissimilation process of glycerol to 1, 3-propanediol are written 
as follows [2]:  
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where X  is the biomass, gl-1; D  is the dilution rate, h-1; 
S0

C  

and 
S

C  are the substrate concentration (glycerol) in feed and 

reactor, respectively, mmoll-1; 
PD

C , 
HAc

C  and 
EtOH

C  are the 

concentrations of products 1, 3-propanediol, acetic acid and 
ethanol, respectively, mmoll-1; t  is the fermentation time, h; 

 ,
S

q ,
PD

q ,
HAc

q  and 
EtOH

q  are the specific growth rate of cells, 

specific consumption rate of substrate, specific formation rate 
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of products 1, 3-propanediol, acetic acid and ethanol, 
respectively, mmolg-1h-1, which can be expressed as: 
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For Klebsiella pneunoniae cultivated under anaerobic 
conditions at 37 °C and pH 7.0, the maximum specific growth 

rate 
m

  and the saturation constant for glycerol present the 

values of 0.67 h-1 and 0.28 mmoll-1, respectively. The critical 

concentrations denoted as *C  in glycerol, 1, 3-propanediol, 

acetic acid and ethanol are 2039, 939.5, 1026 and 360.9 mmoll-

1, respectively. In addition, the parameters 
1

b , 
2

b , 
1

c  and 
2

c  in 

(10) are 0.025, 5.18, 0.06 and 50.45 mmoll-1h-1, respectively, 
while the ones for (7), (8) and (9) are listed in Table 1. 

TABLE I.  PARAMETERS IN THE MODELS (7)-(9) 

Substrate/products m Ym qm K* 

Glycerol 2.20 0.0082 28.58 11.43 

1, 3-propanediol –2.69 67.69 26.59 15.50 

Acetic acid –0.97 33.07 5.74 85.71 

 

B. Optimization Problem Statement 

In this work, we propose the following bi-objective 
optimization problem of continuous bio-dissimilation process 
of glycerol to 1, 3-propanediol: 
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where the objective function 
1

f  is the production rate of 1, 3-

propanediol, and 
2

f  is the conversion rate of glycerol; 

constraints (13)-(17) are the steady-state conditions; equations 
(18)-(24) are the lower and upper bounds for the optimized 

variables D , 
S0

C , X , 
S

C , 
PD

C , 
HAc

C  and 
EtOH

C  respectively. 

This set of constraints defines the feasible space, while the set 
of all possible values of the objective functions constitutes the 
objective space. Obviously, problem (11)-(24) is a bi-objective 
nonlinear programming with complex constants. 

In bi-objective optimization problem (11)-(24), there does 
not exist a feasible solution that maximizes the objective 

functions 
1

f  and 
2

f  simultaneously. Therefore, attention is 

paid to Pareto optimal solutions; that is, solutions that cannot 
be improved in any of the objectives without degrading at least 
one of the other objectives. The set of Pareto optimal outcomes 
is often called the Pareto front. 

III. OPTIMIZATION METHODS 

Many strategies including weighted-sum method [11], 
weighted min-max method [12], normal-boundary intersection 
method [13], normal constraint method [14], genetic 
algorithms [15-16], and teaching–learning-based optimization 
algorithm [17] have been proposed to solve a bi-objective 
optimization problem. In this section, we firstly use the 
weighted-sum and normal-boundary intersection methods, 
respectively, to transform the bi-objective optimization 
problem (11)-(24) into a sequence of single objective 
problems. Then we use an interior point algorithm to solve 
these single objective problems. 

A. Weighted-sum Method 

In this subsection, we apply the weighted-sum method to 
turn optimization problem (11)-(24) into the following 
formulation: 

21
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where ]1,0[w  is the weighting factor; the new objective 

functions 
1

f  and 
2

f  have the following representations: 
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In this expression, *

i
x ( 2,1i ) denote the optimal solutions of 

objective functions 
i

f ( 2,1i ) under constraints (13)-(24), 

respectively, and min

i
f ( 2,1i ) can be written as: 
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B. Normal-boundary Intersection Method 

In this subsection, we introduce the normal-boundary 
intersection method to deal with bi-objective problem (11)-(24). 
This approach essentially works by solving sequentially a set 
of single optimization problems, which are defined as: 
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where   is a 2×2 payoff matrix in which the i-th column is 
T*

2

*

1
))(),((

ii
xfxf ;   is a vector of weights such that 

1
21
   and 0

i
 ( 2,1i );   defines the set of points 

that are convex combinations of the individual minima; n  is 

called a quasi-normal vector defined as T]11[  ; F  is a 

vector with T

21
),( ffF  . As   is systematically modified, 

the solution to problem (40)-(53) yields an even distribution of 
Pareto optimal points representing the complete Pareto set. 

C. Single Objective Optimization Solver 

We use an interior point method [18-20] to efficiently solve 
both nonlinear optimization problems (25)-(37) and (40)-(53). 
This approach replaces the nonlinear programs (25)-(37) and 
(40)-(53) by a sequence of barrier subproblems of the forms 
(54)-(74) and (75)-(96) respectively. 
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where 
i

s  are the slack variables, and 0  is the barrier 

parameter.  





14

1

)ln(min
i

i
sf 


               (75) 

subject to satisfying: 

Fn                                         (76) 

0)(  XD                                     (77) 

0)(
SSS0

 XqCCD                      (78) 

0
PDPD
DCXq                               (79) 

0
HAcHAc

 DCXq                            (80) 

0
EtOHEtOH

DCXq                          (81) 

05.0
1

 sD                                 (82) 

005.0
2

 sD                               (83) 

02000
3S0

 sC                           (84) 

0
4S0
 sC                                       (85) 

03
5

 sX                                    (86) 

005.0
6

 sX                              (87) 

02039
7S

 sC                            (88) 

0
8S
 sC                                       (89) 

05.939
9PD

 sC                         (90) 

0
10PD
 sC                                     (91) 

01026
11HAc

 sC                         (92) 

0
12HAc
 sC                                    (93) 

09.360
13EtOH

 sC                      (94) 

0
14EtOH
 sC                                   (95) 

0
i

s , 14,,2,1 i                        (96) 

where 
i

s  are the slack variables, and 0  is the barrier 

parameter. 

Both approximate problems (54)-(74) and (75)-(96) are a 
sequence of equality constrained problems. These are easier to 

solve than the original inequality-constrained problems (25)-
(37) and (40)-(53).  

 Now we present the following algorithm to solve 
optimization problems (25)-(37) and (40)-(53): 
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the required accuracy. Set iterative counter 0k . 

(2) At the k-th ( 1k ) iteration of the algorithm, compute 

and approximate solution of the barrier problem (25)-(37) or 
(40)-(53) by using a technique of switching between a line 
search method that computes steps by factoring the primal-dual 
equations and a trust region method that uses a conjugate 
gradient iteration [20]. By default, the algorithm first attempts 
to take a direct factorization step. If it cannot, it attempts a trust 
region iteration that guarantees progress toward stationarity is 
invoked. 

(3) If the barrier problem (25)-(37) or (40)-(53) is solved to 
the required accuracy, then stop; else set 

)1()(  kk   ( 10  ) 

1 kk  

and go to step (2).  

IV. OPTIMIZATION RESULTS 

Figures 1 and 2 illustrate the Pareto front of bi-objective 
optimization problem (11)-(24) by using the weighted-sum and 
normal-boundary intersection methods. It can be seen that the 
production rate of 1, 3-propanediol and conversion rate of 
glycerol can not simultaneously reach their ideal points. 
However, a higher production rate of 1, 3-propanediol can be 
obtained if the conversion rate of glycerol belongs to the 
interval [0.94, 0.98]. From Figures 1 and 2, it can be observed 
that only fewer Pareto solutions were obtained by the 
weighted-sum approach when the production rate of 1, 3-
propanediol is smaller than 20 mmoll-1h-1. This concludes that 
the normal-boundary intersection method can yield a better 
distribution of Pareto front than the weighted-sum approach. 
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Figure 1.         Pareto front with the weighted-sum method. 

V. CONCLUSIONS 

In this paper, we have addressed the bi-objective 
optimization of continuous bio-dissimilation process of 
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glycerol to 1, 3-propanediol. The Pareto front of the proposed 
bi-objective model can be successfully obtained by using the 
weighted-sum and normal-boundary intersection methods. 
However, the normal-boundary intersection method obtains a 
better distribution of Pareto front than the weighted-sum 
approach. This suggests that the normal-boundary intersection 
method is a good choice for dealing with the bi-objective 
optimization of continuous bio-dissimilation process of 
glycerol to 1, 3-propanediol. 
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Figure 2.         Pareto front with the normal-boundary intersection method. 
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