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Abstract—Knowing the subcellular location of a protein is an 

important step in understanding its biological functions. In this 

paper, we developed a new method to identify whether a protein 

is a Golgi-resident protein or not in plant cells. We proposed to 

incorporate transmembrane domain information and six 

different kinds of physicochemical properties of amino acids in 

the general form of Chou’s pseudo-amino acid compositions. By 

using SVM based classifiers, our method achieved over 90% 

prediction accuracy in a 5-fold cross validation, which is much 

better than the other state-of-the-art methods 
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I.  INTRODUCTION 

The Golgi apparatus, which can be found in most 
eukaryotic cells, usually serves as an intermediate station in the 
secretory pathway that transports proteins out of a cell [1]. It 
also plays an important role in the post-translational 
modification process [2].  

Knowing whether a protein is a Golgi-resident protein is an 
important step in understanding its possible biological 
functions. However, it is a big challenge to identify Golgi-
resident proteins only from primary sequences. Although there 
are many Golgi-resident proteins that have been sequenced, the 
computational methods for identifying Golgi-resident proteins 
are still lacking. Especially, as the plant Golgi-resident proteins 
seem to have no targeting signals, it is more difficult to identify 
Golgi-resident proteins in plants. As far as we know, GolgiP [3] 
is the only existing method that is specially designed to predict 
Golgi-resident proteins in plants. By mapping known 
functional domains on protein sequences, GolgiP has achieved 

a promising prediction performance. However, as two classes 
of proteins in the training and testing dataset of GolgiP are 
highly imbalanced, its prediction performance may be over-
estimated.   

Over the last few years, various features of sequence have 
been used to predict subcellular locations of a protein [4], such 
as amino acid compositions, dipeptide compositions, functional 
domain information, GO information and many more. 
Although the exact biological mechanism, which directs 
proteins to Golgi apparatus, is still unknown, the 
transmembrane domain properties of Golgi-resident proteins 
seem to be important.     

In this paper, we integrated the transmembrane domain 
properties in the general form of pseudo-amino acid 
compositions [5] to predict the Golgi-resident proteins. 
Without any knowledge of functional domains, our method 
performed better than the GolgiP method. 

II. MATERIALS AND METHODS 

A. Dataset curation 

As we focused on predicting Golgi proteins in plants, we 
chose Arabidopsis thaliana as the model organism in this study. 
We extracted all known protein sequences of Arabidopsis 
thaliana from UniProt database release 2014_06 [6]. To 
establish a high quality working dataset, several screening 
procedures were strictly followed. 

(1) The protein sequences were categorized into two classes, 
the Golgi-resident class and the non-Golgi class. If a protein 
was annotated with at least one Golgi associated subcellular 
location, it would be assigned to the Golgi-resident class. 
Otherwise, it would be assigned to the non-Golgi class. 

(2) For the Golgi-resident class, the proteins with 
ambiguous annotations, such as ‘PROBABLE’, ‘POTENTIAL’, 
‘POSSIBLE’, or ‘BY SIMILARITY’ were discarded. The 
proteins with subcellular location annotations other than “Golgi 
apparatus” or “Golgi apparatus membrane” were also discarded. 
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(3) For both classes, the protein sequences, which contain 
ambiguous symbols, like “X”, “B” or “Z”, were discarded. The 
protein sequences, which are less than 15 in length, were also 
discarded, as they could be fragments of other proteins. 

(4) CD-HIT program [7] was applied to reduce the 
homologues and redundancy sequences. According to GolgiP 
[3], the similarity cut-off value was set to 95%. 

Eventually, we obtained a dataset containing 204 Golgi-
resident proteins and 8795 non-Golgi proteins. As it is a highly 
imbalanced dataset, directly evaluating our method on this 
dataset is likely to result in an over-estimated performance. 
Therefore, we used a sub-sampling strategy to create 10 
balanced datasets. In every balanced dataset, the Golgi-resident 
proteins were the same 204 Golgi-resident proteins. The non-
Golgi proteins were 204 proteins, which were randomly 
selected from the 8795 non-Golgi proteins. These ten datasets 
were denoted as GDS95-01, GDS95-02, ..., GDS95-10. 

B. Sequence representations 

The pseudo-amino acid compositions have been commonly 
used to represent protein sequences in predicting their 
subcellular locations [8]. We proposed a novel mode of the 
general form of Chou’s pseudo-amino acid compositions [5], 
which incorporates the transmembrane domain information and 
various physicochemical properties of amino acids. 

Let r1r2...rl be a protein sequence, where ri (i=1, 2, ..., l) is 
the i-th amino acid on the sequence, l the length of the protein 
sequence. The representation contains four different parts. The 
first part is the amino acid compositions of the protein, which 
represents the occurrence frequencies of 20 different types of 
amino acids in the sequence. This part is defined as follows: 

 V1 = 
1

l
[n1, n2, ..., n20]T, (1) 

where ni (i = 1, 2, ..., 20) is the number of the i-th type of 
amino acid. 

The second part is the di-peptide compositions of the 
protein, which represents the occurrence frequencies of 400 di-
peptides. Because the sequence order information is lost in the 
amino acid compositions, this part provides some sequence 
order information. This part is defined as follows: 

 V2=
1

l-1
[d1, d2, ..., d400]T, (2) 

where di (i = 1, 2, ..., 400) is the number of the i-th dipeptide. 

The third part describes the transmembrane domain 
information, as the transmembrane domain information has 
been proved to be useful in predicting Golgi-resident proteins 
[9].This part includes four parameters of the transmembrane 
domains: the average length of all transmembrane domains 
(ltmd), the length of the first transmembrane domain (l0), the 
number of transmembrane domains in the first 70 amino acids 
(m70) and the probability that the N-terminal of the protein is on 
the cytoplasmic side of the membrane (pnc). These parameters 

are computed for every protein sequence by using the 
TMHMM server [10]. This part can be denoted as follows: 

 V3=[ltmd, l0, m70, pnc]T, (3) 

The last part is a serial of auto-correlation functions, which 
are calculated from the physicochemical properties of the 
amino acids. Let H(k, j) be the k-th type of physicochemical 
properties of the j-th type of amino acid. The q-order auto-
correlation function can be represented as follows: 

 fq, k = 
1

l-q
i = 1

l-q

h(k, ri)h(k, ri+q), (4) 

where h(k, j) is the normalized value of H(k, j), which can be 
defined as: 

 h(k, j) = 
H(k, j) - mk

 sk
, (5) 

where  

 mk = 
1

20
j = 1

20

H(k, j), and  (6) 

 sk = 
1

20
j = 1

20

(H(k, j) - mk)2  (7) 

We applied six different physicochemical properties in this 
work, including hydrophobicity, hydrophilicity, side-chain 

mass, pK1 (-COOH), pK2 (NH3) and pI (at 25C). The value 
of q varies from 1 to λ. Therefore, the forth part of the 
representation can be defined as the follows: 

 V4 = [f1, 1, f1, 2, ..., f1, λ, f2, 1, f2, 2, ..., f2, λ, ..., f6, 1, f6, 2, ..., f6, λ]T(8) 

By concatenating four parts, the whole representation is: 

 V = [V1
T,V2

T,V3
T,V4

T]T (9) 

To optimize the prediction performance, the parameter λ 
was set to 17. 

C. Training and Testing method 

The LIBSVM package was applied in this work [11]. We 
chose the Radial Basis Function (RBF) kernel and used a grid 
search method to optimize the parameters c and γ. 

We carried out two different evaluation experiments, 5-fold 
cross validation and independent dataset test, to estimate the 
prediction performance of our method. In the independent 
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dataset test, 80% of the sequences were randomly selected to 
train the predictor and the remaining 20% were used to test the 
predictor.  

We used four statistics to measure the prediction 
performance of our methods, including sensitivity (Sen), 
specificity (Spe), accuracy (Acc) and Matthew’s Correlation 
Coefficients (MCC). These statistics are defined as the follows: 

 Sen = 
TP

TP+FN
, (10) 

 Spe = 
TN

TN+FP
, (11) 

 Acc = 
TP+TN

TP+TN+FP+FN
, and (12) 

 MCC = 
TP·TN-FN·FP

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
, (13) 

where TP, TN, FP and FN are the number of true positives, true 
negatives, false positives and false negatives in the 5-fold cross 
validation or the independent dataset test. 

III. RESULTS AND DISCUSSIONS 

A. Parameter Calibration 

In order to optimize the prediction performance of our 

method, the value of parameter  should be chosen carefully. 
We used GDS95-01 dataset to optimize this parameter. By 

generating sequence representations with  from 1 to 25, we 

found that =17 could achieve the best prediction performance 

in 5-fold cross validation (Figure 1). Therefore, parameter  
was set to 17 in all following analysis. This may not be the 
optimized value for every dataset. However, optimizing 
parameters on every dataset is not a reasonable choice in 
practical applications and may result in over-estimated 
performance.  

 

Fig. 1. Parameter calibration curve of pseudo-amino acid compositions.  

 

TABLE I.   PREDICTION PERFORMANCE 

Dataseta Senb Spec Accd MCCe 

GDS95-01 86.3% 94.1% 90.2% 0.806 

GDS95-02 83.8% 88.7% 86.3% 0.726 

GDS95-03 82.8% 83.8% 83.3% 0.667 

GDS95-04 80.4% 88.3% 84.4% 0.688 

GDS95-05 81.8% 90.2% 86.0% 0.723 

GDS95-06 81.4% 90.7% 86.0% 0.724 

GDS95-07 82.3% 88.3% 85.3% 0.707 

GDS95-08 80.9% 87.7% 84.3% 0.688 

GDS95-09 81.8% 85.8% 83.8% 0.677 

GDS95-10 86.8% 88.8% 87.8% 0.755 

a. Dataset names; 

b. Sensitivity, as defined in Eq. (10); 

c. Specificity, as defined in Eq. (11); 

d. Accuracy, as defined in Eq. (12); 

e. Matthew’s correlation coefficient, as defined in Eq. (13). 

B. Prediction performance in different datasets 

As we have mentioned in the Dataset section, we generated 
10 balanced datasets for evaluating the prediction performance. 
We carried out 5-fold cross validation on every dataset. The 
prediction performance can be found in Table 1. The prediction 
accuracy on different dataset varies in a range from 83% to 
90%. The sensitivity varies from 81% to 87%. As the 
parameter of our algorithm was only optimized on the GDS95-
01 dataset, these results indicated that our classifier was not 
over-optimized.  

C. Performance comparison 

We carried out an independent dataset test on GDS95-01 to 
compare the prediction performance of our method with 
GolgiP [3], which is the state-of-the-art method in predicting 
Golgi-resident proteins. Both predictors were tested by the 
same testing dataset. Our method was trained and optimized 
without any information from the testing dataset. Our method 
performs much better than the GolgiP predictor not only in 
prediction accuracy, but also in sensitivity (Table 2).  

It should be noted that GolgiP reported much higher 
performances when evaluated on their own training and testing 
dataset. However, it should also be noted that the dataset for 
training and testing GolgiP is highly imbalanced. The non-
Golgi proteins are much more than the Golgi-resident proteins 
in GolgiP dataset. This will result in an over-fitted predictor 
that will recognize the non-Golgi proteins much better than the 
Golgi-resident proteins, regardless to which kind of features it 
took into consideration. When GolgiP is tested by a balanced 
dataset, although its ability to recognize non-Golgi proteins is 
still promising, its ability in recognizing Golgi-resident 
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proteins becomes more visible. Therefore, we can observe that 
GolgiP performs better than our method in specificity, but 
worse in sensitivity, accuracy or MCC.  

TABLE II.  PERFORMANCE COMPARISON 

Methods Sen Spe Acc MCC 

Our method 90.0% 97.5% 93.8% 0.877 

GolgiP-Comprehensive 57.5% 100% 78.8% 0.635 

D. Further performance analysis 

In our method, we used a number of different features to 
represent the protein sequences. However, it is interesting to 
investigate which feature is more useful in our method. 
Therefore, we used different sequence representations to test 
our method on GDS95-01 dataset. As shown in Table 3, the di-
peptide composition is more useful to improve the sensitivity, 
while both the transmembrane domain information and the di-
peptide compositions are useful to improve the specificity. 

To further compare the performance of our method and the 
GolgiP, we carried out comparison on all 10 datasets. As 
shown in Table 4, our method performed better than GolgiP on 
every dataset in sensitivity. As GolgiP was trained with an 
imbalanced dataset, in which non-Golgi proteins are over ten 
times of Golgi-resident proteins. The almost 100% specificity 
of GolgiP is not indicating its superior performance, but a sign 
of potential over-fitting problems in its training.  Although the 
non-Golgi proteins are much more than Golgi-resident proteins 
in nature, it is not reasonable to train a classifier with 
imbalanced dataset.  This is simply because the imbalanced 
dataset will easily result in over-fitting problems [12, 13]. 

TABLE III.  REPRESENTATION EFFECT ANALYSIS 

Representations Sen Spe Acc MCC 

PseACC 83.3% 85.8% 84.6% 0.691 

PseACC+dipf 85.8% 90.2% 88.0% 0.761 

PseAcc+dip+Transg 86.3% 94.1% 90.2% 0.806 

f. dip: di-peptide composition 

g. Trans: Transmembrane domain information 

TABLE IV.  COMPREHENSIVE PERFORMANCE COMPARISON 

Sj 
GolgiP-Comprehensive Our Method 

Sen Spe Acc MCC Sen Spe Acc MCC 

01 57.5% 100% 78.8% 0.635 90.0% 97.5% 93.8% 0.877 

02 65.0% 97.5% 81.3% 0.661 85.0% 82.5% 83.8% 0.675 

03 65.0% 100% 82.5% 0.694 82.5% 80.0% 81.3% 0.625 

04 72.5% 100% 86.3% 0.754 90.0% 97.5% 93.8% 0.877 

05 67.5% 100% 83.8% 0.714 75.0% 92.5% 83.8% 0.686 

06 72.5% 100% 86.3% 0.754 77.5% 97.5% 87.5% 0.765 

07 70.0% 100% 85.0% 0.734 75.0% 97.5% 86.3% 0.744 

08 65.0% 100% 82.5% 0.694 82.5% 85.0% 83.8% 0.675 

09 65.0% 100% 82.5% 0.694 72.5% 82.5% 77.5% 0.553 

10 80.0% 97.5% 88.8% 0.787 92.5% 100% 96.3% 0.928 

h. Dataset id, i.e. 01 is GDS95-01 

IV. CONCLUSIONS 

In this paper, we present a new method for predicting 
Golgi-resident proteins in plants. Although we did not 
incorporate any functional domain related information, it still 
performs better than the other state-of-the-art methods. As 
there are no significant targeting signals for the Golgi-resident 
proteins in plants, we hope our method would be useful in 
identifying Golgi-proteins in plants. 
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