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Abstract— Monitoring the changes in gene expression 

patterns over time provides the distinct possibility of unraveling 

the mechanistic drivers characterizing cellular responses. Such 

time series gene expression data allow us to broadly “watch” the 

dynamics of the system. However, one challenge in the analysis of 

time series data is to establish and characterize the interplay 

between genes that are activated, deactivated or sustained in the 

context of a biological process or functional category. To address 

such challenges, novel algorithms are required to improve the 

interpretation of these data by integrating multi-source prior 

functional evidence. In this paper, we introduced a novel 

network-based approach to extract functional knowledge from 

time-dependent biological processes at a system level using time 

series mRNA deep sequencing data. First, a list of differentially 

expressed genes (DEGs) at each time point was identified. Second, 

GO terms that are enriched in each DEG list were identified. 

Third, the significance of interactions between DEGs in these GO 

terms at consecutive time points was measured. Finally, the 

significant interactions between DEGs in different GO terms 

were used to construct the interaction networks among GO terms 

between two consecutive time points, called GO networks. The 

proposed method was applied to investigate 1α, 25(OH)2D3-

altered mechanisms in zebrafish embryo development. GO 

networks were constructed over 4 consecutive time points. 

Results suggest that biological processes such as cartilage 

development and one-carbon compound metabolic process are 

temporally regulated by 1α,25(OH)2D3. Such discoveries could 

not have been identified with canonical gene set enrichment 

analyses.  These results demonstrate that the proposed approach 

can provide insight on the molecular mechanisms taking place in 

vertebrate embryo development upon treatment with 

1α,25(OH)2D3. Our approach enables the monitoring of 

biological processes that can serve as a basis for generating new 

testable hypotheses. Such network-based integration approach 

can be easily extended to any temporal- or condition-dependent 

genomic data analyses. 
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I. INTRODUCTION (HEADING 1) 

Biological systems are highly dynamic and responsive to 
the external environment. The gene expression in these systems 
is a temporal process. Different genes are required to play 

different functional roles under different conditions. This is 
highly regulated by a complex regulatory system of diverse 
molecular interactions, such as protein-protein interactions 
(PPIs), protein-DNA interactions (PDIs), and metabolic 
signaling pathways [1]. Taking a snapshot of the gene 
expression profile in a biological system (e.g., cell cycle 
system and development) under a certain condition can reveal 
some of the genes that are specially expressed under this 
condition. However, to investigate how all the genes are 
regulated in the context of a biological system, and to 
determine the interaction relationships between these genes, it 
is necessary to measure the gene expression profile in a time 
series manner [2]. This can also provide the distinct possibility 
of unraveling the mechanistic drivers characterizing cellular 
responses [3]. Time series gene expression data have been 
widely applied to study a wide range of biological systems, 
including cell cycle [4], genetic interaction and knockouts [5, 
6], and development [7]. Despite their unique features, many 
computational challenges still remain in analysing such gene 
expression profiles.  For instance, it is difficult to study the 
relationships among differentially expressed genes (DEGs) at 
each time point in a case-control time series experiment, due to 
large number of DEGs and limited time points available. To 
address such challenges, algorithms are required that are 
specifically designed to improve the interpretability of these 
data by integrating multi-source prior biological evidence. 

Molecular interactions such as PPIs and PDIs are essential 
for a wide range of cellular processes and form a network of 
astonishing complexity. Until recently, our knowledge of such 
complex networks was rather limited. The emergence of high-
throughput technologies has given us possibilities to 
systematically survey and study the underlying biological 
system. The molecular interaction maps have been built in 
model organisms (e.g., S.cerevisiae [8], D.melanogaster [9] 
and C.elegans [10]), as well as in higher vertebrate organisms 
(e.g., zebrafish [11], mouse [12] and human [13]). Evidently, 
the generated interaction maps offer us a rich resource for 
systematic studies of molecular networks and complement 
other types of biological data. However, current interaction 
databases include a large amount of false positive and false 
negative interactions due to the unreliability of interaction 
mapping technologies available. In addition, these molecular 
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interactions are static. There is little direct information 
available on the temporal dynamics of these molecular 
interactions. To understand time-dependent biological 
processes at network level, molecular networks need to be 
considered as temporal and spatial rather than static 
information flow between molecules [14]. Recently, attempts 
have been made in integrating different types of biological data 
with molecular network interactions to reveal the dynamics of 
molecular networks [15]. However, only a few studies have 
investigated the dynamics of the molecular network 
interactions in time course gene expression data with limited 
success. For instance, Tang et al. [16] proposed to reconstruct 
time course protein interaction networks (TC-PINs) by 
incorporating time series gene expression into PPI networks. 
The functional modules from TC-PINs were enriched in related 
gene ontology (GO) biological processes than those from static 
PPI networks. However, the causal relationship between TC-
PINs across time points could not be inferred. Such causal 
relationships are crucial to understand the underlying regulated 
biological processes in a time-dependent and context-specific 
manner. A propagation of such interactions from gene level to 
biological process/pathway level (e.g., gene ontology 
information) will help us identify the altered biological 
processes during the time in which these gene expressions are 
examined. 

The gene ontology (GO) Consortium [17] has developed 
three separate ontologies—molecular function (MF), biological 
process (BP) and cellular component (CC) - to describe the 
attributes of gene products. Several studies have demonstrated 
that the molecular interactions and GO provide substantially 
congruent yet subtle different view of biological systems [18].  
The hypothesis is that the interaction between any two 
proteins/genes indicates a general likelihood that these two 
proteins are functionally coupled or involved in the same 
biological process. Identifying enriched interactions between 
any two GO terms based on molecular interactions between 
genes assigned to these two GO terms are more statistically 
reliable: interactions reflect statistically enriched temporal 
connections between multiple genes of one GO term and 
multiple genes of another. However, this could not tell the 
temporal directionality in these connections. By incorporating 
time series gene expression data, the causal relations can be 
inferred in this GO network by highlighting information flow 
between GO biological processes enriched in DEGs at 
consecutive time points.   

In this paper, we developed a novel network-based 
computational approach to study causal relationships between 
DEGs at consecutive time points in a case-control time series 
experiment. To overcome the limitation that the intervals of 
time series experiments usually would not fit the time scale of 
functional communications between most genes and the 
statistical power from only several time points would be too 
low for robust analysis, we constructed networks of GO 
biological process terms connected by significant interactions 
between DEGs on sequential time points. This enables us to 
understand the biological processes at GO scale, in which 
relations between nodes (representing GO terms) are more 
statistically stable. This is more statistically significant and 
biologically meaningful compared to single co-expressed links. 

The detail of the proposed approach is presented in Figure 1. 
The proposed method was applied to time series mRNA-Seq 
data set to determine the influence of 1α,25(OH)2D3  treatment 
on gene expression patterns in zebrafish embryo development 
and the causal relationship between DEGs at consecutive time 
points. The resulting networks suggest that well-studied as well 
as novel molecular mechanisms are regulated by 
1α,25(OH)2D3 treatment. 

II. MATERIAL AND METHODS  

A. mRNA-Seq gene expression data 

The mRNA-Seq profiling in four biological replicate 
samples of 1α,25(OH)2D3- or ethanol-treated zebrafish, 2, 4, 6 
and 7 days post-fertilization (hpf) was obtained by the Illumina 
HiSEQ 2000 platform. The generated 50-bp FASTQ sequence 
reads were aligned to both the latest Zebrafish genome 
assembly (zv9) and our in-house exon junction database using 
BWA [19]. The aligned sequence tags were counted for each 
annotated genes/exons using custom scripts based on the 
UCSC genome binning approach [20].  A total of 14267 genes 
were annotated using RefSeq database and the raw read counts 
for genes were generated for further downstream analyses. 

B. Zebrafish molecular interaction network 

The zebrafish molecular interaction network was 
downloaded from FunCoup database 
(http://FunCoup.sbc.su.se/). In total, there are 1,999,529 
interactions between 13033 proteins in the zebrafish 
interactome downloaded on January 3rd, 2012. 

C. Gene ontology annotation in zebrafish 

The gene ontology annotation was downloaded from the 
original website (http://www.geneontolgy.org/) on Januray 
20th, 2012. In this paper, we used the biological process terms 
only since our goal is to identify the 1α,25(OH)2D3-altered 
mechanisms. 

D. Differential gene expression analysis 

For differential gene expression analysis between 
conditions, we eliminated genes without any reads across all 
samples. We used DESeq package in R to test for differential 
expression for all the remaining genes [21]. We conservatively 
accounted for multiple testing, employing a Bonferroni 
correction, yielding an adjusted p-value for differential 
expression for each gene. A strict adjusted P value cut-off of 
0.01 was used to select significant DEGs 

E. Construction of time-dependent GO-GO networks 

A network of GO terms was generalized from the network 
of DEGs at different developmental stages in zebrafish 
embryos. At GO scale, relations between nodes (representing 
GO terms) are more statistically stable. Links reflect 
statistically enriched temporal connections between multiple 
genes in one specific GO term and multiple genes in another 
one. Thus, this GO-GO network highlights information flow 
between GO biological processes affected by 1α,25(OH)2D3 at 
different developmental stages. If there were a significant 
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Figure 1. Overview of the proposed approach.
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number of genes in GO term X first altered at one time point 
interacting with genes in GO term Y first altered on the next 
time point, we hypothesize that a causative relation exists X -> 
Y. We limited the network to only enriched GO-GO 
connections, i.e. one with significant more gene-gene 
interactions (given both genes were 1α,25(OH)2D3-altered) 
than expected by chance. This allows us to focus on the major 
tendencies of propagation of 1α,25(OH)2D3 treatment and 
organismal response to it. Compared to the individual category 
enrichment, this approach yielded a much richer analysis for 
interpretation. The detailed reconstruction step is as follows: 

1) For any two GO terms, a link was counted if any two DEGs 
in these two GO terms were connected in the original 
FunCoup network; 

2) The GO-GO links were classified into time-dependent 
patterns according to the days when the gene were 
differentially expressed for the first time: 

a. Day 2 -> Day 4: one gene was differentially expressed 
on Day 2, while the other on Day 4; 

b. Day 4 -> Day 6: similar definition as in (a); 

c. Day 6 -> Day 7: similar definition as in (a). 

3) The GO For each candidate GO-GO network link, its 
statistical significance was evaluated by the permutation 
test, i.e. gene names were randomized in the FunCoup 
network for 10,000 times. The links between GO terms 
with P value less than 0.01 were considered statistically 
significant.  

Enriched GO-GO links were kept in the GO-GO network, 
i.e. ones with P value less than 0.01. The network was 
visualized in the Cytoscape tool [22]. 

F. GoMiner analysis 

The gene level Gene ontology enrichment analysis was 
performed using GoMiner [23] on the DEGs that were 
identified at each time point. 

III. RESULTS 

In this section, we present: 

1) A description of generation and initial characterization of 
the mRNA-seq dataset obtained from zebrafish embryos 
altered by 1α,25(OH)2D3 treatment; 

2) An overview the interactome-based analysis that we 
proposed; 

3) Chronological-organized analysis of the transcriptome 
changes and interactome dynamics altered by 
1α,25(OH)2D3 treatment during early zebrafish 
development. 

Figure 1 illustrates the overview of the proposed analysis 
workflow. 

A. Characterization of mRNA-seq dataset during zebrafish 

embryo development 

Genome-wide transcriptional profiling were performed 
using Illumina HiSeq sequencing technique for four replicate 
cDNA libraries of 1α,25(OH)2D3- or vehicle-treated zebrafish, 
48, 96, 144, and 168 hours post fertilization (hpf) as described 
in our previous publication [24]. Overall, the RNA-seq data 
obtained from 32 independent zebrafish RNA libraries had 
comparable number of total reads [24]. These reads were 
mapped to the latest zebrafish genome assembly (zv9) from the 
UCSC website (http://genome.ucsc.edu/). The refFlat 
annotation file from the University of California Santa Clara 
(UCSC) Table Browser was used to generate raw reads 
mapped to each annotated gene in the annotation file. The 
genes altered by 1α,25(OH)2D3 treatment at each time point 
were identified using the negative binomial model as describe 
in [21]. A list of altered genes identified along with the days on 
which they were differentially expressed is presented in 
Supplemental Table 1. We also carried out the gene ontology 
(GO) enrichment analysis using the GOMiner tool [23]. 
However, due to the limited number of DEGs identified at each 
time point and the limitation associated with the Fisher’s Exact 
Test, the results of these analyses could not provide much 
indication of the biological processes being moduled in 
response to 1α, 25(OH)2D3 treatment. To more efficiently 
derive biological insights from the genome-wide transcriptomic 
response to the treatment, we proposed a network-based 
analysis in the following sections. 

 

Figure 2. Venn diagram showing the overlap of DEGs at 
different developmental stages. Genes were grouped based on 
the day(s) they were differentially expressed. In four studied 
developmental stages 3134 genes were defined as differentially 
expressed during at least one stage. 

B. Interactome-based analysis of differentially expressed 

genes during zebrafish development 

We overlaid the DEGs onto the zebrafish functional 

interactome from the FunCoup database [11]. The DEGs were 

overlaid on their corresponding nodes in the interactome, and 

related functional interactions between genes were extracted 
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Figure 3. Network of GO terms enriched in 1α,25(OH)2D3 -altered genes between consecutive days. (A) GO network of day 2 -

 > 4; (B) GO network of day 4 - > 6; (C) GO network of day 6 - > 7. Color represent the fraction of the gene in that node that 

were regulated by 1α,25(OH)2D3 on any day (green is low and red is high). Edge thickness and opacity represent the number of 

gene-gene links between two GO terms and significance score (-log10(P value)), respectively. 

 

and reconstructed the 1α,25(OH)2D3 specific interactome. 

Many network interactions connect the few genes altered on 

day 2 and many altered on later days. We found that there was 

a statistically significant enrichment in links between genes 

that were 1α, 25(OH)2D3-altered earlier and genes regulated 

later in the course of experiment. This suggested that 

treatment affected signals were propagated along network 

routes from the initially affected genes (on day 2) towards 

network regions that were perturbed later. 

Specifically, 3134 genes were up- or down-regulated by 

1α,25(OH)2D3 on at least one of the four days in the 

experiment (adjusted P value less than 0.01). On day 2, only 

77 genes were changed.  331 genes on day 4, 1672 genes on 

day 6, and 2673 genes on day 7 differentially expressed in 

response to 1α,25(OH)2D3 treatment (Figure 2). The property 

of these DEGs was investigated in the context of FunCoup 

network. The average degree of DEGs is significantly higher 

than non-DEGs (14.9 versus 5.8, the P value of one-way 

ANOVA less than 10-6). This indicated that DEGs were more 

enriched in hub genes (genes with higher node degree). This 

can partially explain the initially altered genes on days can 

pass the changes to more interacted genes on later days 

through the network links/interactions. 

To gain a better perspective on what this temporal 

pattern in enriched connections between 1α,25(OH)2D3-

altered genes might mean, we analyzed the GO categories 

associated with the connected nodes in the context of 

interactome. 

 

C. Network propagation analysis of differentially expressed 

genes during zebrafish development 

The FunCoup network links among these genes can 
indicate a general likelihood how they are functionally related, 
but don’t highlight the temporal directionality in these 
connections.  Causal relations can be suggested by examining 
temporal changes, i.e., if information associated with gene A at 
time point t helps to predict the state of gene B at time point 
(t+1), then a causal relation A->B might be inferred [25, 26]. 
However, traditional network inference approaches could not 
identify such temporal regulatory relationship due to limited 
time points available. The statistical power from only four time 
points would be too low for robust analysis. To gain a better 
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Figure 4. Network of GO terms enriched in 1α,25(OH)2D3 -altered genes between consecutive days. (A) GO network of day 2 -

 > 4; (B) GO network of day 4 - > 6; (C) GO network of day 6 - > 7. 

 
perspective on the temporal pattern among 1α, 25(OH)2D3-
altered genes, we generalized a network of GO terms 
connected by the links between these DEGs on consecutive 
time points. At this broader scale, relations between nodes 
(GO biological processes) are statistical reliable: links reflect 
statistically enriched temporal connections between multiple 
genes of one node with multiple genes of another. Thus, this 
GO-GO network highlights flow between GO biological 
processes altered by 1α, 25(OH)2D3 on different days. 

1α, 25(OH)2D3-altered genes in individual gene-gene 
interactions in FunCoup interactome were labeled with days 
when these genes were detected as differentially expressed. 
We were particularly interested in identifying the links in 
which one gene was altered earlier than the other. Thus, if 
there were a significant number of genes in GO category X 
altered on day d interacting with gene in GO category Y 
altered on day (d+1), we hypothesize that a causative relation 
X -> Y. Limiting the output to only enriched GO-GO 
connections allowed us to focus on the major changes of 
propagation of 1α, 25(OH)2D3 and organismal response to it. 
Compared to the individual category enrichment approach 
such as GOMiner, our approach yielded a much richer 
analysis for interpretation of time series changes unique to 
time series gene expression data. The Figures 2-4 presented 
day-to-day enriched interactions at GO biological process 

level. We provided a chronological interpretation on these 
findings below. 

D. Chronological analysis of the interaction network 

altered by 1α, 25(OH)2D3 at gene ontology level 

The approach described above enabled flexible and deep 

monitoring of 1α, 25(OH)2D3 altered changes in the 

transcriptome at GO level in the context of functional 

interactome. To show time-dependent information flow in 

embryonic development altered by 1α,25(OH)2D3 treatment, 

GO networks of enriched GO-GO interactions were 

reconstructed. 

Day 2 to Day 4 transition: the network of GO terms 

between DEGs on day 2 and 4 suggested a cascade initiated 

by changes in xenobiotic metabolism genes and leading to 

genes involved in ion transport and transcription regulation 

(Figure 3(A)). The “eye development” category is enriched 

on as early as day 2, indicating that eye development was 

changed by 1α, 25(OH)2D3 treatment. The eye 

development of zebrafish starts as early as 28 hpf [27]. The 

vitamin D receptor has been shown to express in various 

tissues and organs including retina. This confirms the 

finding using our proposed approach. 

Day 4 to Day 6 transition: day 4 was marked by the 

most significant increase of linkage from transcription 
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factors altered on day 4 towards others altered later. The 

most central node on day 4 is organ development, which 

became connected to multiple biological processes, such as 

cardiovascular system development, blood vessel 

development, immune system process, heart development, 

brain development, tube development, and others. This 

observation suggests that vitamin D treatment can alter 

biological processes involved in the development of many 

organs. One network of GO terms between day 4 and 6 is 

presented in Figure 3(B). 

Day 6 to Day 7 transition: the organ morphogenesis was 

identified as a central node in the GO network of day 6 -> 7, 

connecting to multiple biological processes, such as nervous 

system development, circulatory system development, 

vasculature development, epithelium development, retina 

development in camera type eye, and many embryonic 

development terms including cartilage development and 

neuron generation. One network of GO terms between day 6 

and 7 is presented in Figure 3(C). 

To better interpretate the causal relationships between 

enriched GO categories on consecutive days, we presented a 

GO level information flow by combining the GO-GO 

networks across all four days (Figure 4). The interactome 

was altered in the regions scattered in the interactome to 

many biological processes that are clustered together in the 

interactome. This suggests that the effect of 1α, 25(OH)2D3 

treatment can be as early as 48 hpf in early zebrafish 

development.  

IV. DISCUSSIONS 

In this work, we have developed a network-based 
computational approach that analyzes time series mRNA-seq 
gene expression profiles in the context of molecular 
interactome and GO information to reveal temporal 
transcriptional changes altered by 1α,25(OH)2D3 in 
zebrafish embryo development. This enabled us to review 
the progression of 1α,25(OH)2D3-induced changes in gene 
expression and the network structure itself in early zebrafish 
development. The efficiency of our analysis of 
1α,25(OH)2D3-alered global gene expression was enhanced 
by the interactome approach, as the network-based analysis 
approach were superior to their single-gene approach in 
terms of both statistical power and biological interpretability, 
A variety of interesting biological hypotheses were derived 
from our analysis. The significant biological processes 
include iron metabolism, neuronal and retinal development, 
and many organ development related pathways. Our 
approach is useful for discovering candidate biological 
processes that can serve as a basis for generating new 
testable hypotheses. Such network-based integration 
approach can be extended to any temporal- or condition-
dependent genomic data analyses. Other types of interaction 
or ontology data can also be incorporated into this approach. 
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