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Abstract— This study aims to expand the efficiency of the 

interpretation concerning the aging process, by exploring a broad 

gene set, derived from the analysis of an integrative 

transcriptomic microarray dataset. The dataset comprises 

human skeletal muscle samples, obtained from healthy males and 

females, that were used to derive a gene signature of a high 

informative content, with respect to its functional association 

with the aging phenotype. Towards this end, a multilayered 

computational workflow integrating advanced statistical 

methodologies for the derivation of reliable confidence measures, 

distribution-based entropy calculations to examine the 

informational content of the dataset, enrichment analysis, graph-

theoretic methods and intuitive visualization was applied. 

Specifically, statistical testing revealed differentially expressed 

genes, while an uncertainty calculation algorithm, exploiting 

Gene Ontology (GO) terms annotations, extended the list of 

significant genes from 254 to 2791, namely p-value threshold was 

increased from 0.0005 to 0.103, while keeping simultaneously 

noise measurements legitimately low. This rich gene set 

associated functionally the macroscopic phenotype of muscular 

aging with highly informative, stably correlated with each other, 

molecular annotations in the GO database. Finally, a set of 57 

reliable genes was identified that comprise a gender-independent 

aging signature, after incorporating crucial information about 

genes pivotal regulatory role as inferred by the GO tree. The 

biological interpretation was highly assisted by the illustration of 

the functional mappings between genes, cellular location and 

biological processes through circle packing graphs. 
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I.  INTRODUCTION  

Aging is a complex biological process, whose hallmarks are 
functional capacity reduction, disturbances in cellular 
homeostasis, immune system and exacerbated metabolic 
decline among others. It is strongly correlated with multiple 
diseases, such as Alzheimer’s disease, atherosclerosis, diabetes 
mellitus, sarcopenia and osteoporosis [1]. Aging, influenced by 
a variety of intrinsic and extrinsic factors, has been associated 
with impairments in genomic or proteomic level [2], however it 
is not fully elucidated how these changes affect the molecular 
pathways [3]. Skeletal muscle aging comprises a significant 

issue for aging process, since muscle accounts for 
approximately half of the cell mass of the human body, and 
sarcopenia is a key feature of age-related frailty [4], [5]. Age-
related changes in skeletal muscle appear to be influenced by 
sex, however controversy exists regarding how sex influences 
each aspect of the aging process of skeletal muscle [6].  

DNA microarrays have been exploited in several studies in 
order to reveal distinct molecular patterns declarative of aging 
in various tissues, including human skeletal muscle. 
Specifically, DNA microarrays has been used to study 
primarily sex-related differences in gene expression in human 
skeletal muscle [6]–[8], while few studies have focused on 
gender independent profiling [9]. This can be due to that men 
and women differ in hormone levels and certain muscle 
characteristics [10], [11], so that it cannot be assumed that they 
have identical age-related changes in muscle [12]. 

In this present study, we combined transcriptional profiling 
data of human skeletal muscle from young and elderly, male 
and female subjects. The dataset used here comes from 
different, publicly available microarray data experiments. Data 
pre-processing was performed using the statistical 
programming language R and Bioconductor, which provide 
various computational tools for the comprehensive statistical 
analysis of the relevant high-throughput genomic data [13]. 

 As a first step, a significant list of differentially expressed 
genes between young and old subjects in the unified dataset 
including both males and females, was derived through the 
application of the popular statistical t-test. We then applied an 
integrated novel workflow, programmed in Python, that aims to 
partition the p-value sorted, cumulative statistical distribution 
of the genes comprising the dataset. Based on this distribution, 
we propose selecting a broad subset of genes that estimates and 
minimizes noise by exploiting gene mappings into concrete 
functional terms with adequate gene membership, describing 
the underlying biological process in aging, as opposed to 
promiscuous functional associations with low membership.  

In order to shape the broad, representative gene list related 
to aging phenotype as described above, we exploited gene-
function mapping performed by the Gene Ontology (GO) terms, 
which are derived through statistical enrichment analysis. 
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Enrichment analysis was performed here using the StRAnGER 
[14] functional analysis web application. To derive this 
representative, yet highly informative (with noise minimization) 
gene list, we propose instead of the typical rigid confidence 
limits, a threshold that depends on the cumulative p-value 
distribution of the genes pertaining the whole dataset. This 
process is in line with the conformal prediction framework, 
aiming to derive reliable confidence limits for the independent 
gene predictions. Shortly, we propose mapping incremental 
sets of genes into GO terms, and partitioning the corresponding 
functional terms into informative, when these possess a 
substantial gene membership (>= 3 genes) or potentially noisy 
ones (< 3 genes).  In this iterative process, we estimate the 
information content of the functional annotation terms sets and  
target to minimize the Shannon entropy of the selected gene set, 
thus finalizing the gene selection process. In information theory, 
the Shannon entropy is a measure of the necessary information 
in order to predict the value of a random variable. 
Consequently, it could serve as a measure of uncertainty that a 
variable represents a causal (or random (erroneous or passenger) 
event. In line with that, we use the Shannon entropy to 
calculate the uncertainty that the examined gene set is 
selectively enriched or not, for functional terms, that are 
considered informative for the aging phenotype. The Shannon 
entropy has been already introduced as a differential metric to 
detect isolated disease-related genes with mild differential 
expression [15], excluding however from the analytical 
perspective, the biological information content of gene sets.  In 
another  study the Shannon entropy is used to calculate the 
information content derived from an ontological structure, 
without the extraction of important biological information from 
a genes dataset [16]. In this sense, it is the first time to the best 
of our knowledge where the concept of entropy is applied in 
conjunction with that of semantic topology, and specifically the 
calculation of the graph compactness, as an optimization 
problem, solved numerically through an iterative 
computational framework. In order to enhance the robust 
biomarker discovery process concerning skeletal muscle aging, 
we used the GORevenge [17] application that can  reveal 
hidden functional regulatory effects among genes by 
establishing it onto a system’s level interpretation. Finally, the 
results are vividly illustrated through an intuitive visualization 
scheme, designed and developed in JavaScript language. 

II. DATASET 

Microarray gene expression data from vastus lateralis 
biopsies obtained from healthy young (20-29 years old) and old 
(65-75 years old), male and female subjects, was used here. 
The dataset  comes from different, MIAME-compliant [18] 
experiments that are publicly available at the Gene Expression 
Omnibus (GEO) database with accession numbers GDS287, 
GDS288, GDS472 and GDS473 (see [4], [12] for more 
detailed information regarding these hybridizations). The 
dataset encompassed 30 samples in total: 14 from young male 
(NYm=7) and female (NYf=7), and 16 from old male (NOm=8) 
and female (NOf=8) subjects. All experiments were used the 
Affymetrix® (Santa Clara, CA) Human Genome U133A and 
U133B oligonucleotide arrays (HG-U133 Set). The HG-U133 
Set has about 44,000 probe sets that measure the expression of 
about 33,000 genes. 

III. METHODS 

A. Data Pre-Processing 

Missing value imputation was applied directly to the 
available normalized data using the nearest neighbor averaging 
[19]. Expression values were then filtered out based on a 
threshold fraction of the present detection calls (derived by the 
Affymetrix' s MAS5 algorithm), hence increasing the ratio of 
true positives to false positives [20]. We filtered out probes 
characterized as not Present by the MAS5 detection call in at 
least 60% of the samples in at least one group. Each expression 
value was divided by the mean of all expression values in each 
array series, in order to be comparable between the 
experiments. In the unified dataset, including both young or old 
males and females, a total of 11256 probe IDs were kept after 
the procedure described above. 

B. Genes Selection based on statistics, entropy calculations 

and GO terms 

The statistical t-test was used to assess gene expression 
differentiation between young and old samples.  Traditionally, 
the significant genes selection is realized based on an arbitrary 
p-value threshold in the range [0.001...0.05] ([9],[21]-[23]). 
Although this range of p-value thresholds restricts the selection 
of random genes, it may obstruct the disclosure of important 
biological information extracted by the enrichment analysis 
that follows gene selection in such studies. Moreover even a 
strict set of differentially expressed genes may fail addressing 
the issue of taming the impact of biological noise, namely 
irrelevant functional annotations for a complex biological 
phenotype like aging in this study. With the view to overcome 
the contingent restriction of information due to the effect of 
arbitrary rigid thresholds, an entropy-based  algorithm is 
introduced here, which tries to validate the new biological data, 
which are proposed by the enrichment analysis using GO terms 
or potentially other gene nomenclatures. 

Initially, the algorithm executes a statistical enrichment 
analysis through StRAnGER web application, for a highly 
confident gene set, corresponding to differentially expressed 
genes at a very strict statistical threshold (e.g. p < 0.0005). This 
set is able to produce an informative collection of GO terms, 
with high confidence (minimal false positive risk). The specific 
GO terms collection is then expanded to embrace their parent 
terms, by exploiting the GO linkage tree. As our goal is to 
enrich this collection of functional annotations with new 
significant GO terms, the algorithm performs an iterative 
process, which applies the same procedure to incrementally  
formed larger gene sets, which correspond to milder p-value 
thresholds, up to a maximal gene set corresponding to the point 
that the information content, is maximized, thus the 
measurement of the Shannon entropy reaches a local minimum. 

Specifically, in each round, the gene list is growing by a 
fixed amount of probe IDs, corresponding to a possibly 
variable number of genes. New GO terms encountered are 
initially considered as potential noise, if their enrichment score 
in StRAnGER analysis is lower than the value of the genes 
added. However, if the enrichment score of those terms 
increases in subsequent steps, as the iterative process advances 
further to form larger sets, and the respective GO term remains 
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significant according to the applied hypergeometric test in 
StRAnGER results, then automatically this term is consider to 
contribute additional biological information, rather than noise. 
Taking advantage of enrichment analysis, we can calculate the 
noisy content for each gene. A noisiness measure for a gene is 
the ratio of noisy GO terms, out of the GO terms annotated to 
this gene. In the rare case where a gene is not annotated to any 
GO term, then the noise weight is equal to 1, as it is considered 
noisy from the functional point of view, in the sense that its 
role has not been studied thus far and has not been linked to 
any biological process. The gene set emerging in each round is 
finally evaluated in terms of uncertainty (bits) using Shannon 
Entropy [24]. This measurement considers the probabilities of 
the two extreme hypotheses, noisy vs. representative set of 
genes, and calculates the uncertainty that the gene set could be 
representative of the biological information beneath the 
investigated phenotype. The iterative procedure executes 
further up to propose a maximal gene set, corresponding to a 
local minimum of uncertainty. This is the one considered the 
best choice in terms of functional information content related to 
the phenotype studied. 

Overall, the procedure is able to monitor the incoming 
quanta of biological information incorporated at every 
incremental step, validate the effect of noise, and finally 
expand the significant genes list, up to the point where the 
information content of the dataset is sullied by the detrimental 
impact of unreliable functional terms, clearly suggesting a loss 
of the homeostasis of the dataset. 

C. Hub genes selection 

The GORevenge algorithm, freely available through the 
web, was applied following the gene selection process 
described above. GORevenge uses graph-theoretic methods to 
exploit the GO tree in order to sort related genes/GO terms 
according to their regulatory impact, as this is derived from the 
degree of connectivity that each gene/ term possesses with 
other terms. Thus, it can aid the elucidation of hidden 
functional regulatory effects among genes and a system’s level 
interpretation. GORevenge was applied separately once for the 
“Molecular Function” (MF), once for the “Biological Process” 
(BP) aspect and once for the “Cellular Component” (CC) 
aspect using the same parameters (the Resnik semantic 
similarity metric, the Bubble genes algorithm, and a relaxation 
equal to 0.15). Out of the GORevenge's output list with the 
most important genes, only those that were simultaneously 
contained in the original gene list submitted to the method (the 
one proposed by the gene selection process in previous sub-
section) were selected as gene hubs and were transferred to the 
visualization module next. 

D. Visualization 

In order to illustrate gene-function relationships, exploiting 
GO mapping, between cellular components and molecular 
processes, a visualization module has been applied that 
generates scalable vector graphics (svg) image files, based on 
JavaScript D3 visualization library. This implementation 
creates a svg graph for each significant GO term, as derived 
from enrichment analysis. Specifically, a circle packing graph 
is constructed, being a cross section, where the major circle 

corresponds to the significant GO term and the interior circles 
belong to other significant, GO terms, from different GO 
categories, with common content in genes. In addition,  the 
genes displayed in the internal circles, integrate information 
about their individual expression with green color for the 
downregulated and red colour for the overexpressed. In this 
way, the interpretation is visually assisted, so as to aid the 
elucidation of complex biological procedures, where a number 
of metabolic or signaling pathways and cellular components 
are involved. 

IV. RESULTS AND DISCUSSION 

A. Strict gene list selection and enrichment analysis  

Starting from a strict list of 354 probe IDs (p < 0.0005), 
which corresponds to 289 unique genes, a functional analysis 
with StRanGER was executed. The enrichment analysis links 
the individual genes with specific biological processes, 
molecular functions and cellular components. The output 
comprised a list of 50 significant over-represented GO terms 
(hypergeometric test p≤0.05, 90% cut-off percentage, 104 
bootstrap iterations). The respective results for “Biological 
Process” terms are presented in Table I. The majority of 
significant GO terms corresponds to metabolic processes, 
related to energy production, involvement of mitochondrial 
compartments and regulation of gene expression. All these 
terms possess an established role and have been notably related 
to aging in previous studies, as described in the following. 

 Terms like small molecule metabolic process, 
mitochondrial electron transport, regulation of acetyl-CoA 
biosynthetic process from pyruvate, and tricarboxylic acid 
cycle are significant biological processes implicated to aging-
related pathways as already reported in [9],[27],[28]. Oxidative 
capacity, ATP synthesis coupled proton transport and ATP 
catabolic process are affected by the decline in ATP 
concentration of aged muscle tissues [25],[26]. Aged tissues 
suffer from oxidative stress which provides the development of 
stress granules [29]. Also, the investigated functional decline of 
aged skeletal muscles explains the significance of terms like 
muscle filament sliding [28], while blood vessel development 
is impaired in aged tissues [30]. Concerning to cellular 
compartments, mitochondrion related genes reduce their 
expression during the aging process [22], while cytosolic 
pathways are significant for the degradation of abnormal 
proteins that are accumulated in aged cellular compartments 
[31]. 

B. Extended significant genes list and additional biological 

annotation 

In order to enrich the above biological information and 
derive a representative set of genes for the muscular tissue 
aging phenotype, the incremental gene selection process was 
applied exploiting StRAnGER iteratively, to the ever 
increasing gene sets. With a gradual increase of 40 probe IDs 
per set, a total of 191 incrementally formed gene lists were 
analyzed. Entropy calculation results corresponding to the 
uncertainty (bits) are presented in Fig. 1, where the respective 
p-value threshold trend is also plotted. The uncertainty varies 
from 0.44 to 0.611 bits, oscillating irregularly within these 
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Fig. 1 Entropy (uncertainty) and p-value fluctuation as a function of 
number of probes corresponding to gene lists incrementally formed  

limits, between 354 to 2994 probes and finally presenting a 
local minimum observed at 3714 probes. Afterwards, there is a 
remarkable gradual entropy increase parallel to the increase of 
the number of probes, for the gene lists incrementally formed. 

TABLE I 

GO Term Term Description p-value 

GO:0044281 small molecule metabolic process 1,43687E-06 

GO:0022904 respiratory electron transport chain 3,63629E-06 

GO:0044237 cellular metabolic process 4,51712E-06 

GO:0006099 tricarboxylic acid cycle 4,9405E-
06 

GO:0006120 mitochondrial electron transport, NADH to 

ubiquinone 5,39363E-06 

GO:0015986 ATP synthesis coupled proton transport 8,37261E-06 

GO:0010510 regulation of acetyl-CoA biosynthetic 
process from pyruvate 8,7867E-06 

GO:0006412 translation 9,76222E-06 

GO:0006090 pyruvate metabolic process 1,01334E-05 

GO:0042776 mitochondrial ATP synthesis coupled 

proton transport 1,09668E-05 

GO:0055114 oxidation reduction 1,17252E-05 

GO:0010467 gene expression 1,30704E-05 

GO:0034063 stress granule assembly 1,35473E-05 

GO:0008053 mitochondrial fusion 1,39152E-05 

GO:0000122 negative regulation of transcription from 

RNA polymerase II promoter 1,52052E-05 

GO:0045944 positive regulation of transcription from 

RNA polymerase II promoter 1,55798E-05 

GO:0006915 apoptosis 1,65811E-05 

GO:0006200 ATP catabolic process 1,78186E-05 

GO:0045454 cell redox homeostasis 1,84699E-05 

GO:0030049 muscle filament sliding 1,92991E-05 

 

 

Theoretically, the uncertainty graph should contain two 
different fractions; the initial oscillations, due to the 
incorporation of new biological information, which initially 
due to the adoption of stringent thresholds, is considered 
informative, but as its enrichment increases is accepted as such, 
and the subsequent, practically monotonic, gradual increase of 
uncertainty, caused by the introduction of noisy genes, which 
do not map to informative terms. The significant gene list 
selection optimal point separating these two fractions, where 

the accumulation of informative GO terms is minimized and 
practically from this point on, we observe accumulation of 
genes not conferring any new, topologically coherent, 
phenotypic terms. In the specific analysis, this optimal point is 
more clearly observed as a local minimum, due to the great 
accumulation of genes into informative terms and a consequent 
uncertainty reduction, from 2994 to 3714 probe IDs. Naturally, 
the estimation of the local minimum, is largely relying, to 
numerous algorithmic settings, as the step of the algorithm, the 
stringency of the statistical enrichment threshold, the 
dimensionality of  the dataset, among others. , Fine-tuning the 
performance of the algorithm is an optimization problem for 
each dataset, but in general the derivation of a global critical 
point is attainable.  

The noisy genes ratio as a function of  the number of probes 
is presented in the bar graph of Fig 2. The blue bars section 
corresponds to the ratio of genes not mapped to any of the GO 
terms (briefly this is defined as ratio1) qualified through 
StRAnGER algorithm, at the given step, while the red bars 
section (defined as ratio2), is the ratio of genes mapped to 
qualified GO terms,.  The total noisy genes ratio is maximized 
at 784 probe IDs corresponding to a p < 0.003 threshold. At 
this point the high ratio2 value (=0.059) indicates the 
integration of multiple new GO terms, which are initially 
characterized as noise, but in reality they represent important 
biological information, rather  than  noise, as it can be surmised 
from  the very low, corrected, enrichment p-value scores. The 
iterative process validates this assumption as proven by the 
gradual ratio2 decline in larger gene lists, which means that the 
noisy GO terms percentage is drastically reduced. On the other 
hand, the ratio1 is steadily increasing after the point of 3714 
probe IDs, suggesting that after this point, at a large amount of 
promiscuous, unannotated genes is infiltrating. Thus, these 
genes seem statistically irrelevant with the aging phenotype or 
are at least represent genes that have not meticulously been 
studied, therefore elude functional annotation in the Gene 
Ontology. Therefore, despite of the continuing ratio2 reduction, 
after this point, we used as cutoff for our significant gene list 
the point of 3714 probes. 

This probe IDs set, which corresponds to 2791 unique 
genes and p<0.103 is selected as the aging significant and 
informative genes list. The additional biological annotation 
data, significant for the aging phenotype, which is not 
correlated with the initial list of GO terms, consists of 53 new 
GO terms. Out of these, 23 incoming terms correspond to 
“Biological Process” and are presented in Table II. 

Additional GO terms include processes related to protein 
activation and degradation, viral-host interactions and DNA 
repair. It is known that an aging muscle has a reduced capacity 
to synthesize new proteins [32]. Concerning protein catabolic 
process, a related study mentions that 20S proteasome 
proteolytic activity is declined in the aged rats muscle tissues 
[33]. Also, it is proven that all pathways of DNA repair lose 
their efficiency with age advancement, due to accumulation of 
loss of function mutations [34]. Wnt signaling pathway is 
correlated with the signal transduction between the 
extracellular space and the cell nucleus. Results from the 
experiments on Caenorhabditis elegans suggest that Wnt 
signaling regulates aging-intrinsic genetic pathways [35]. Our 
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Fig. 2 Noisy genes ratio – blue bar for unannotated genes, red bar for 
annotated with noisy GO terms genes.  

 

Fig. 3 Young tissue: Up-regulation of PNPT1 in RNA processing (red) 
and down-regulation (green) of CAT (negative regulation of apoptotic 
process, oxidation reduction process, small molecules metabolic 
process). 

results corroborate the necessity of Wnt signaling pathway 
analysis in human aged tissues.  

 

TABLE II 

GO Term Term Description p-value 

GO:0006281 DNA repair 1,39404E-07 

GO:0043161 proteasome-mediated ubiquitin-dependent 

protein catabolic process 

4,01265E-07 

GO:0016032 viral process 5,04072E-07 

GO:0019048 modulation by virus of host morphology or 
physiology 

7,84455E-07 

GO:0016055 Wnt signaling pathway 1,44435E-06 

GO:0000278 mitotic cell cycle 1,54752E-06 

GO:0006366 transcription from RNA polymerase II 
promoter 

1,65519E-06 

GO:0044255 cellular lipid metabolic process 1,67942E-06 

GO:0016567 protein ubiquitination 1,87219E-06 

GO:0006977 DNA damage response, signal transduction 

by p53 class mediator resulting in cell cycle 

arrest 

1,89895E-06 

GO:0006468 protein phosphorylation 1,9476E-06 

GO:0006511 ubiquitin-dependent protein catabolic 
process 

2,00238E-06 

GO:0000082 G1/S transition of mitotic cell cycle 2,67007E-06 

GO:0006470 protein dephosphorylation 2,74105E-06 

GO:0031124 mRNA 3'-end processing 2,82219E-06 

GO:0006119 oxidative phosphorylation 2,97111E-06 

GO:0000380 alternative mRNA splicing, via spliceosome 3,2539E-06 

GO:0006376 mRNA splice site selection 3,50225E-06 

GO:0006369 termination of RNA polymerase II 

transcription 

4,37063E-06 

GO:0000288 nuclear-transcribed mRNA catabolic 

process, deadenylation-dependent decay 

4,38441E-06 

GO:0045727 positive regulation of translation 5,40528E-06 

GO:0006406 mRNA export from nucleus 6,24915E-06 

 

 

 

C. Hub  genes selected 

In the direction of identifying the most critical genes from 
the extended list of 2791, the GORevenge platform was 

utilized. An amount of 113 hub genes resulted for both 
“Biological Processes” and “Molecular Functions”. When 
applying the criterion of existence in the “Cellular 
Components”, the aforementioned hubs set are reduced to 57 
significant genes. Only 8 hubs are included in the initial strict 
gene list of 354 probe IDs with p < 0.0005; the vast majority of 
hubs belong to larger p-values. This set is presented in Table 
III (the above 8 hubs are illustrated with red colour). 

D. Hub genes visualization, Up-down regulation in aging 

phenotype 

With the view to elucidate hub genes activations into 
specific cellular components and molecular procedures in 
aging, the visualization method was applied. We chose to 
illustrate here the visualization of common hub genes activated 
in the mitochondrial  interrmembrane  space (randomly chosen), 
and the correlated, based on common genes activation, 
biological processes (RNA processing, negative regulation of 
apoptotic process, oxidation reduction process and small 
molecules metabolic process). Specifically, the activation of 
two common differentially expressed genes, CAT and PNPT1, 
is presented in Fig. 3 and Fig. 4 for young and aged tissues, 
respectively.  PNPT1 takes part only in RNA processing, while 
its expression declines with age (red in Fig. 3, green in Fig. 4). 
On the other hand, CAT is activated in negative regulation of 
apoptotic process, oxidation reduction process and small 
molecules metabolic process and is up-regulated in aged tissues 
(green in Fig. 3, red in Fig. 4). 
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Fig. 4 Old aged tissue: Down-regulation of PNPT1 in RNA processing 
(green) and up-regulation (red) of CAT (negative regulation of 
apoptotic process, oxidation reduction process, small molecules 
metabolic process). 

 

V. CONCLUSION 

In the present work, a novel, highly generic, data-driven, 
integrated analysis workflow combining statistical methods, 
entropy calculation, functional analysis and visualization is 
proposed, in order to identify a gender-independent significant 
set of genes underlying the aging process. Starting from a 
transcriptional profiling dataset from different vastus literalis 
biopsies from young and elderly, male and female objects, we 
identified a broad set of  2791 genes that correspond to an 
informative and minimum noisiness list of GO terms in line 
with aging phenotype. The ultimate list, with potentially high 
biomarker value for muscular aging, consists of 57 
differentially expressed genes that are derived from the 
aforementioned broad set. These were found to play a central 
regulatory role in the underlying molecular processes and 
cellular components, as revealed by the GO tree linkage 
analysis. Finally, circle packing graphs were used to illustrate 
the association of important genes for specific molecular 
processes and cellular compartments. To the best of our 
knowledge, it is the first time that this type of iterative, 
automated, relieved from statistical cutoffs, information-based 
approach is applied for the standardized, processing and 
interpretation of a voluminous, integrative transcriptomic 
dataset. The approach manages to exploit the whole dataset by 
inspecting it overall and partitioning it, to the potentially causal 
part and the non-informative one for the study of the given 
phenotype. This is accomplished through a multi-step, 
procedure. This manages to combine reliable statistical 
properties and strategies, and information theory (semantic 
networks and estimation of entropy) in order to extend the 
efficiency of the interpretation by revealing critical patterns of 

informational organization that characterize the distribution of 
values of the dataset. 

TABLE III 

Gene ID GOcount a Prune[3] b Prune[6] b Prune[9] b 

VEGFA 110 82 82 82 

WNT5A 108 101 101 101 

PTEN 93 80 79 79 

SIRT1 89 76 75 75 

EGFR 81 72 72 72 

SMAD3 74 69 69 69 

MAPK1 68 61 61 61 

CAV3 58 49 49 49 

GSK3B 57 54 54 54 

CD36 55 50 50 50 

PML 54 50 50 50 

TCF7L2 53 49 49 49 

SMAD4 52 47 47 47 

PTK2 49 45 45 45 

TP63 47 44 44 44 

MDM2 47 43 43 43 

NRP1 44 40 40 40 

AQP1 44 36 35 35 

PTCH1 43 39 39 39 

STAT1 42 35 35 35 

ANK2 42 32 31 31 

TPR 39 31 31 30 

PAFAH1B1 39 37 37 37 

INPP5K 39 32 31 31 

SMARCA4 37 32 32 32 

SKI 37 36 36 36 

ERBB4 36 31 31 31 

DLG1 36 35 35 35 

DAB2 36 34 34 34 

RAPGEF2 35 29 29 29 

TGFBR3 33 31 31 31 

DMD 33 31 31 31 

HDAC4 31 27 27 27 

GRB2 29 29 29 29 

CAPN3 28 25 25 25 

C1QBP 28 26 26 26 

HSPD1 27 24 23 23 

NOS1 26 26 26 26 

CTNNA1 26 23 23 23 

CAT 25 21 21 21 

OGT 24 23 22 22 

DNAJA3 24 24 24 24 

CREBBP 24 19 18 18 

PCNA 23 20 20 20 

NCOR1 23 21 21 21 

PAM 22 21 21 21 

FLNA 21 21 21 21 

XRCC5 20 17 17 17 

VCP 20 13 13 13 

SNW1 20 17 17 17 

ADAM10 20 17 17 17 

XRCC6 19 15 15 15 

TOPORS 19 16 16 16 

SQSTM1 19 17 17 17 

KCNJ11 19 17 17 17 

HSP90AA1 18 15 13 13 

DAG1 18 17 17 17 
a Refers to the number of original GO terms. b Refer to number of GO 

terms remaining after GOrevenge pruning, reflecting the centrality of each 
gene 
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