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Abstract—Most of complex diseases are believed to be mainly 

caused by epistatic interactions of pair single nucleotide poly-

morphisms (SNPs), namely, SNP-SNP interactions. Though many 

works have been done for the detection of SNP-SNP interactions, 

the algorithmic development is still ongoing due to their mathe-

matical and computational complexities. In this study, we pro-

posed a method, PSOMiner, based on the generalized particle 

swarm optimization algorithm, with mutual information as its 

fitness function, for the detection of SNP-SNP interaction that 

has the highest pathogenic effect in a SNP data set. Experiments 

of PSOMiner are performed on six simulation data sets under the 

criteria of detection power. Results demonstrate that PSOMiner 

is promising for the detection of SNP-SNP interaction. In addi-

tion, the application of PSOMiner on a real age-related macular 

degeneration (AMD) data set provides several new clues for the 

exploration of AMD associated SNPs that have not been de-

scribed previously. PSOMiner might be an alternative to existing 

methods for detecting SNP-SNP interactions. 

Keywords—SNP-SNP Interaction; Mutual Information; Parti-

cle Swarm Optimization 

I. INTRODUCTION 

Complex diseases threatening human health, such as can-
cer, heart disease, and diabetes, account for about 80% of cur-
rent clinical diseases. Research of complex diseases thus be-
comes one of the hottest fields of bioinformatics. More recent-
ly, increasing attentions of researching complex diseases have 
been focused on genome-wide association studies (GWAS). 
GWAS identify massive amounts of single nucleotide poly-
morphisms (SNPs) associated with complex diseases from 
genome-wide SNPs, which implies that GWAS are important 
for the investigation of complex diseases. However, these 
identified SNPs cannot explain the underlying mechanisms of 
complex diseases perfectly, one reason of which is believed to 
be the easily overlooked pathogenic effects of SNP-SNP inter-
actions [1, 2]. These SNP-SNP interactions can provide valua-
ble information related of complex diseases [3, 4]. Though 
many works have been done for the detection of SNP-SNP 
interactions, the algorithmic development is still ongoing due 
to their mathematical and computational complexities: the 
evaluation measure that determines how well a SNP-SNP in-
teraction contributes to the phenotype; the complexity of ge-
netic architecture of a complex disease that leads to prior 
knowledge unavailable, such as the order and the effect mag-
nitude of each SNP-SNP interaction; the intensive computa-

tional burden imposed by the enormous search space, which 
has significant implications for GWAS. 

Swarm intelligence algorithms, such as ant colony optimi-
zation algorithm, and particle swarm optimization (PSO) algo-
rithm, might be good ways for solving these complex prob-
lems [5-9]. Among them, the PSO algorithm has several mer-
its. First, the rules of PSO algorithm are simple. The PSO al-
gorithm has been widely used in solving the optimal solution 
problems. Second, the convergence speed of the PSO algo-
rithm is fast, and many measures in the algorithm can be used 
jointly to avoid falling into local optimum solution. Third, the 
selection of parameters has a mature theoretical research. Wu 
et al. [5] proposed a PSO based method to analyze the SNP-
SNP interaction associated with hypertension. Chuang et al. [6] 
used the Gauss PSO algorithm to detect and identify the best 
protective association with breast cancer. These two methods 
are the exploration of incorporating PSO algorithm into the 
detection of SNP-SNP interactions. However, they only focus 
on finding the best genotype-genotype of a SNP-SNP interac-
tion among possible genotypes of SNP combinations, but not 
the SNP-SNP interactions among possible SNP combinations. 
Obviously, the limited sample size of SNP data affects their 
computational accuracies of fitness functions and hence hin-
ders their further applications. Furthermore, these methods are 
experimented on very small scale data sets (<30 SNPs) of cer-
tain complex diseases, performance of which on various kinds 
of large scale data sets are still unclear. 

In this study, we proposed a method, PSOMiner, based on 
the generalized PSO algorithm with mutual information as its 
fitness function to detect SNP-SNP interaction that has the 
highest pathogenic effect in a SNP data set. PSOMiner has 
four stages, namely, population initialization, fitness evalua-
tion, updating the speed and the location of each particle, Up-
dating individual experience of each particle and the common 
experience of the swarm. In the stage of population initializa-
tion, SNP data are mapped as a matrix, and several parameters, 
including particle number, iteration number, the initial speed 
and location of each particle, and so on, are initialized. In the 
stage of fitness evaluation, the measure of mutual information 
is employed to compute contribution of each SNP combina-
tion to the phenotype. In the third stage, the speed and the lo-
cation of each particle are updated according to its current 
fitness value and historical fitness value. In the final stage, 
individual experience of each particle and the common experi-
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ence of the swarm are updated. Experiments of PSOMiner are 
performed on six simulation data sets under the criteria of de-
tection power. Results demonstrate that PSOMiner is promis-
ing for the detection of all simulated SNP-SNP interaction 
models. PSOMiner is also applied on data set of age-related 
macular degeneration (AMD). Results show the strength of 
PSOMiner on real applications, and capture important features 
of genetic architecture of AMD, which provides new clues for 
biologists on the exploration of AMD associated SNPs. PSO-
Miner might be an alternative to existing methods for detect-
ing SNP-SNP interactions. 

II. METHODS 

A. Particle Swarm Optimization (PSO) 

The PSO algorithm was proposed in 1995, which is based 
on a robust theory of swarm intelligence to search for the op-
timal solutions of various kinds of large scale problems [7]. 
The swarm intelligence describes an automatically evolving 
system through the simulation of the social behavior of organ-
isms and their knowledge sharing. Valuable information can 
be shared in the swarm to offer a certain objective which leads 
individuals toward optimal results [6]. 

In the PSO algorithm, a particle represents a possible solu-
tion. In each generation, whether speed and location of a parti-
cle are updated or maintained depends on three parts: its cur-
rent speed, its previous experience, and the common experi-
ence of the swarm. The location of each particle is estimated 
by a fitness function for providing a good search direction. 
Specifically, the individual experience of each particle is up-
dated while fitness value of its current location is higher than 
that of its previous experience; the common experience of the 
swarm is updated by the one of individual experiences of all 
particles with the highest fitness value while such value is 
higher than that of the previous common experience. Based on 
these strategies, the swarm gradually converges to exploit the 
optimal solution in the final. This superior property makes the 
PSO algorithm become one of the popular swarm intelligence 
algorithms and has been applied in several fields. 

Let ipbest  representing the previous experience of the thi  

particle, which can be defined as  1 2, , ,i i i iDpbest p p p , 

where D  is the considered dimension of the solution space. 

Let gbest  representing the common experience of the swarm, 

that is, the best individual experience among those of all parti-

cles, which can be written as  1 2, , , Dgbest g g g . Let the 

location of the thi  particle being  1 2, , ,i i i iDx x x x , where 

 1, ,x M , and M  is the number of SNPs in the data set. 

The thi  particle speed can be denoted as  1 2, , ,i i i iDv v v v  , 

where the range of v  is from 1 M  to 1M  . 

B. PSOMiner: Application of the PSO algorithm on the 

detection of SNP-SNP interaction 

PSOMiner is developed based on the generalized PSO al-
gorithm, with mutual information as its fitness function, for 
the detection of SNP-SNP interaction that has the highest 

pathogenic effect in a SNP data set. Fig. 1 is the flowchart of 
PSOMiner, which shows that PSOMiner has four stages. 

 
Fig.1. The flowchart of PSOMiner 

(1) Population initialization 

At present, the population way of mapping SNPs is to col-
lect them as a matrix (Fig.2), where a row represents geno-
types of a sample and a column represents a SNP. Genotypes 

of a SNP are coded as  1,2,3 , corresponding to homozygous 

common genotype (e.g., AA ), heterozygous genotype (e.g., 
Aa ), and homozygous minor genotype (e.g., aa ), respective-

ly. The label of a sample is a binary phenotype being either 1 
(case) or 2 (control) [3]. 

 

Fig.2. The SNP mapping 

Here, the location of the thi  particle is defined as a combi-

nation of the selected SNPs, which can be defined as 

 1 2, , ,i mx SNP SNP SNP  , 

where SNP  represents the index of a selected SNP, m  is the 

considered order of the SNP-SNP interaction (in the study, it 

is set to 2), and  1, ,i P , P  is the number of particles. 

(2) Fitness evaluation 

Fitness function of the PSOMiner plays an important role 
on deciding which SNP combination is the SNP-SNP interac-
tion, and measuring how much the effect of a captured SNP-
SNP interaction to the phenotype is. In the PSOMiner, mutual 
information is applied as its fitness function, since it is well 
develop and can measure multivariate dependence without 
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complex modeling. Mutual information has been widely used 
as a promising measure for feature selection, and is defined as 

       ; ,I X Y H X H Y H X Y   , 

where  H X  is the entropy of SNP combination X ;  H Y  

is the entropy of the phenotype Y ;  ,H X Y  is the joint en-

tropy of both X  and Y . It is clear that higher mutual infor-
mation value, namely, fitness value, indicates stronger asso-
ciation between the phenotype and the SNP combination. 

(3) Updating the speed and the location of each particle 

PSOMiner executes a search for SNP-SNP interactions by 
continuously updating particle speeds and particle locations in 
all generations. The equations for updating the speed and the 

location of the thi  particle can be defined as 

   1 1 2 2

new old old old

id id id id d idv w v c r pbest x c r gbest x          , 

new old new

id id idx x v  , 

where 1r  and 2r  are random numbers between 0 and 1; learn-

ing factors 1c  and 2c  control how far a particle moving in one 

generation;  1,2, ,d D ; new

idv  and old

idv  respectively denote 

the new and the old speeds of the thi  particle; new

idx  and old

idx  

are respectively the new and the old locations of the thi  parti-

cle; the inertia weight w  controls the impact of the thi  particle 

on its current speed. 

(4) Updating individual experience of each particle and the 
common experience of the swarm 

For each generation, the particle compares its fitness value 
of current location with that of its previous individual experi-
ence and with that of the common experience of the swarm. 
Both the individual experience of the particle and the common 
experience of the swarm are updated if the fitness value of its 
current location is an improvement on the previous ones. Spe-

cifically, if the fitness value of the particle location ix  is bet-

ter than that of 
ipbest , the location and fitness value of 

ipbest  

are updated to ix . Similarly, if the fitness value of the indi-

vidual experience 
ipbest  is better than that of gbest , both the 

location and fitness value of gbest  are updated to 
ipbest . 

III. RESULTS AND DISCUSSION 

A. Parameter settings 

Experiments of PSOMiner are performed on various simu-
lation data sets under the criteria of detection power. To the 
best of our knowledge, PSOMiner is the first PSO based 
method for finding the SNP-SNP interaction among possible 
SNP combinations that has the highest pathogenic effect in a 
SNP data set. This is the reason of the performance of PSO-
Miner not being compared with that of other methods. Param-
eters of PSOMiner are the default settings. Specifically, parti-
cle number is set to 30; iteration number is set to 200; Inertia 

weight w  is set to 1; learning factors 
1c  and 2c  are set to 2. 

All experiments were performed using Matlab software in a 
PC environment (32-bit Windows XP system, Intel coreTM2 
Quad CPU Q6600, 2.4 GHZ, 4GB RAM). 

B. Detection power and data sets 

Detection power is used to evaluate the performance of 
PSOMiner by applying PSOMiner on six groups of simulation 
data sets, each of which consists of a SNP-SNP interaction 
model. Details of these SNP-SNP interaction models are given 

in TableⅠ. 

Various forms of detection power have been proposed de-
pending on what is desired to measure [11-14]. Two types of 
detection power ( 1power  and 2power ) are adopted in this 

study with their constraints from conservative to modest [8]. 

Detection power 1 is defined as the proportion of data sets 
in which all ground-truth SNPs are detected with no false 
positives, where ground-truth SNPs are the SNPs in the SNP-
SNP interaction models. Suppose there are N  data sets with 

the same parameter settings and 
iQ  ground-truth SNPs in data 

set i , detection power 1 is defined as 

1

1
N

i

i

x
power

N

 ， 

where  0,1ix   is the detection tag, i.e., if the top iQ  SNPs 

detected in data set i  includes all ground-truth SNPs, 1ix  ; 

otherwise, 0ix  . 

Detection power 2 is defined as an average proportion of 

ground-truth SNPs in the top iQ  SNPs. Detection power 2 can 

be written as 

1

2
N

i

i i

y
power

Q N




 , 

where 
iy  is the number of ground-truth SNPs in the top iQ  

SNPs detected in data set i . 

We exemplify six commonly used SNP-SNP interaction 
models (Model1 ~ Model6) for this study [11, 12, 15-17]. The 
first two models (Model1 and Model2) are the SNP-SNP in-
teraction models displaying both marginal effects and interac-
tive effects. In Model1, the penetrance increases only when 
both SNPs have at least one minor allele [9]. Model2 assumes 
that the minor allele in the first SNP has marginal effect, when 
minor alleles in both SNPs are present; however the effect is 
inversed [10]. Other models (Model3 ~ Model6) are SNP-SNP 
interaction models displaying no marginal effects but interac-
tive effects. Specifically, Model3 and Model4 are directly cit-
ed from reference [11]; Model5 is a ZZ model [12] and Mod-
el6 is an XOR model [11]. Model3 ~ Model6 are exemplified 
since they provide a high degree of complexity to challenge 
ability of a method in detect pure SNP-SNP interaction effects 
[8]. For each model, 25 data sets are generated by simulator 
EpiSIM [13], where 100 SNPs are genotyped. There are 4000 
individuals in each data set with 2000 cases and 2000 controls. 
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TABLE I.  SIX SNP-SNP INTERACTION MODELS 

Models 
MAF

( a ) 

MAF 

( b ) 
Preva-

lence 

Penetrance tables 

A  
Genotypes ( B ) 

BB  Bb  bb  

Model1 0.30 0.20 0.100 

AA  0.087 0.087 0.087 

Aa  0.087 0.146 0.190 
aa  0.087 0.190 0.247 

Model2 0.40 0.20 0.010 

AA  0.009 0.009 0.009 

Aa  0.013 0.006 0.006 
aa  0.013 0.006 0.006 

Model3 0.20 0.20 0.640 

AA  0.486 0.960 0.538 

Aa  0.947 0.004 0.811 
aa  0.640 0.606 0.909 

Model4 0.40 0.40 0.171 

AA  0.068 0.299 0.017 

Aa  0.289 0.044 0.285 
aa  0.048 0.262 0.174 

Model5 0.50 0.50 0.010 

AA  0.000 0.020 0.000 

Aa  0.020 0.000 0.020 
aa  0.000 0.020 0.000 

Model6 0.50 0.50 0.038 

AA  0.000 0.000 0.100 

Aa  0.000 0.050 0.000 
aa  0.100 0.000 0.000 

C. Discussion of experiment results 

Detection power of PSOMiner on simulation data sets are 
listed on Fig.3. It shows that PSOMiner is promising for the 
detection of all kinds of simulated SNP-SNP interaction mod-
els. Specifically, no matter according to 1power  or 2power , 

PSOMiner always has high detection power on all models (   
0.88); even according to 2power , all detection power values 

reach to a perfect level; 1power  on all models are higher or 

equal to 2power  since 1power  is more stricter than 2power ; 

detection power on Model1 are the winners among those of all 
models, implying that prevalence in models displaying both 
marginal effects and interaction effects is one reason that in-
fluences the performance of PSOMiner; detection power on 
those models only displaying interaction effects have relative 
small values, denoting that PSOMiner might sensitive to the 
effect type, however, this sensitivity is small, sometimes can 
be neglected; detection power on Model1 ~ Model2 always 
have different values since PSOMiner sometimes only identi-
fies several ground-truth SNPs, but not the whole SNP-SNP 
interactions. 

 

Fig.3. Detection Power of PSOMiner on simulated data sets 

D. Application to real AMD data 

In the study, potential of PSOMiner can also be verified by 
analyzing a real AMD data set [14], which contains 103611 
SNPs genotyped with 96 cases and 50 controls. We run PSO-
Miner on AMD data set 10 times with the same parameter 
settings: particle number is set to 10000; iteration number is 

set to 1000; Inertia weight w  is set to 1; learning factors 1c  

and 2c  are set to 2. Detected SNP-SNP interactions associated 

with AMD are reported in TableⅡ. 

The SNP-SNP interaction (rs380390, rs1374431) has the 
strongest interaction effect. The former one and rs1329428 are 
believed to be significantly associate with AMD [9], and there 
are biologically plausible mechanisms for the involvement of 
such two SNPs in AMD. The second one is located in a non-
coding region. Although no evidences were reported with this 
gene related to AMD, it may be a plausible candidate gene 
associated with AMD [15]. The SNP rs2402053 is also in the 
intergenic region between genes TFEC and TES. It is worth 
noting that mutations in these genes are revealed in patients 
with retinal disorders. Therefore, it might be a new genetic 
factor contributing to the underlying mechanism of AMD. 

It is interesting that the SNP-SNP interaction (rs380390, 
rs1363688) were successfully detected 7 times, and by other 
methods [3, 16, 17], though it has moderate interaction effect. 
Further studies with the use of large-scale case-control sam-
ples are need to confirm whether this combination have true 
association with AMD. We hope that some clues could be 
provided for the exploration of causative factors of AMD. 

TABLE II.  SNP-SNP INTERACTIONS ASSOCIATED WITH AMD 

Index SNP Gene Times 
fitness value 

Individual Interaction 

43748 rs380390 CFH 
1 

0.1412 
0.2955 

63879 rs1374431 N/A 0.0198 

43748 rs380390 CFH 
1 

0.1412 
0.2949 

57476 rs2402053 N/A 0.0476 

54108 rs1329428 CFH 
1 

0.1218 
0.2853 

31604 rs9328536 MED27 0.0563 

43748 rs380390 CFH 
7 

0.1412 
0.2752 

80178 rs1363688 N/A 0.0949 

IV. CONCLUSIONS 

Detection and analysis of SNP-SNP interactions are be-
lieved to be important in understanding underlying mechanism 
of complex diseases. In this study, we proposed a method, 
PSOMiner, based on the generalized particle swarm optimiza-
tion algorithm, with mutual information as its fitness function, 
for the detection of SNP-SNP interaction that has the highest 
pathogenic effect in a data set. To the best of our knowledge, 
PSOMiner is the first PSO based method for finding the SNP-
SNP interaction among possible SNP combinations. PSO-
Miner is evaluated on six groups of simulated data sets con-
taining SNP-SNP interaction models. Results demonstrate that 
PSOMiner is promising for the detection of SNP-SNP interac-
tion. In addition, the application of PSOMiner on a real AMD 
data set provides several new clues for the exploration of 
AMD associated SNPs that have not been described previous-
ly. PSOMiner might be an alternative to existing methods for 
detecting SNP-SNP interactions. 
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It is easily seen that PSOMiner has two merits. First, 
PSOMiner based on a robust theory of swarm intelligence is 
easy to be implemented, has high capability and good general-
ity. Second, mutual information is effective in measuring ef-
fects of SNP-SNP interactions to the phenotype. Though 
PSOMiner is a beneficial exploration in the detection of SNP-
SNP interactions, it still has several limitations, for example, 
multiple SNP-SNP interactions in a data set are not considered 
simultaneously, PSOMiner is sensitive to those SNPs display-
ing strong main effects, which inspire us to continue working 
in the future. 

ACKNOWLEDGMENT 

This work was supported by the Science and Technology 
Planning Project of Qufu Normal University (xkj201410), the 
Scientific Research Foundation of Qufu Normal University 
(BSQD20130119), the Innovation and Entrepreneurship 
Training Project for College Students of Qufu Normal Univer-
sity (2014A096), the Shandong Provincial Natural Science 
Foundation (ZR2013FL016), the China Postdoctoral Science 
Foundation Funded Project (2014M560264), the Major Re-
search Plan of the National Natural Science Foundation of 
China (91130006), the Specialized Research Fund for the 
Doctoral Program of Higher Education (20130203110017). 

REFERENCES 

[1] L. R. Cardon and J. I. Bell, "Association study designs for complex 

diseases," Nature Reviews Genetics, vol. 2, pp. 91-99, 2001. 

[2] N. Risch and K. Merikangas, "The future of genetic studies of complex 
human diseases," Science, vol. 273, pp. 1516-1517, 1996. 

[3] J. Shang, et al., "EpiMiner: A three-stage co-information based method 

for detecting and visualizing epistatic interactions," Digital Signal 
Processing, vol. 24, pp. 1-13, 2014. 

[4] B. Maher, "The case of the missing heritability," Nature, vol. 456, pp. 

18-21, 2008. 
[5] S.-J. Wu, et al., "Particle swarm optimization algorithm for analyzing 

SNP–SNP interaction of renin-angiotensin system genes against 

hypertension," Molecular Biology Reports, vol. 40, pp. 4227-4233, 
2013. 

[6] L.-Y. Chuang, et al., "SNP-SNP Interaction Using Gauss Chaotic Map 

Particle Swarm Optimization to Detect Susceptibility to Breast 
Cancer," in System Sciences (HICSS), 2014 47th Hawaii International 

Conference on, 2014, pp. 2548-2554. 

[7] K. James and E. Russell, "Particle swarm optimization," in 
Proceedings of 1995 IEEE International Conference on Neural 

Networks, 1995, pp. 1942-1948. 

[8] J. Shang, et al., "Performance analysis of novel methods for detecting 
epistasis," BMC Bioinformatics, vol. 12, p. 475, 2011. 

[9] W. Tang, et al., "Epistatic module detection for case-control studies: a 

Bayesian model with a Gibbs sampling strategy," PLoS Genetics, vol. 5, 
p. e1000464, 2009. 

[10] Y. Zhang and J. S. Liu, "Bayesian inference of epistatic interactions in 

case-control studies," Nature Genetics, vol. 39, pp. 1167-1173, 2007. 
[11] W. Li and J. Reich, "A complete enumeration and classification of two-

locus disease models," Human Heredity, vol. 50, pp. 334-349, 2000. 

[12] W. N. Frankel and N. J. Schork, "Who's afraid of epistasis?," Nature 
genetics, vol. 14, pp. 371-373, 1996. 

[13] J. Shang, et al., "EpiSIM: simulation of multiple epistasis, linkage 

disequilibrium patterns and haplotype blocks for genome-wide 
interaction analysis," Genes & Genomics, pp. 1-12, 2013. 

[14] R. J. Klein, et al., "Complement factor H polymorphism in age-related 
macular degeneration," Science, vol. 308, pp. 385-389, 2005. 

[15] B. Han, et al., "A Markov blanket-based method for detecting causal 

SNPs in GWAS," BMC bioinformatics, vol. 11, p. S5, 2010. 
[16] J. Shang, et al., "Incorporating heuristic information into ant colony 

optimization for epistasis detection," Genes & Genomics, vol. 34, pp. 

321-327, 2012. 
[17] X. Guo, et al., "Cloud computing for detecting high-order genome-

wide epistatic interaction via dynamic clustering," BMC bioinformatics, 

vol. 15, p. 102, 2014. 
 

 

 

2014 The 8th International Conference on Systems Biology (ISB)
978-1-4799-7294-4/14/$31.00 ©2014 IEEE

155 Qingdao, China, October 24–27, 2014


