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Abstract—Feature selection represents a major challenge in 

the biomedical data mining problem, and numerous 

algorithms have been proposed to select an optimal subset of 

features with the best classification performance. However, the 

existing algorithms do not take into account the vast amount of 

biomedical knowledge from the literature and experienced 

researchers. This work proposes a novel feature selection 

algorithm, cLP, with the optimized binary classification 

accuracy. The proposed algorithm incorporates the biomedical 

knowledge as constraints in the linear programming based 

optimization model. The experimental data shows that cLP 

outperforms the other feature selection algorithms, and its 

constrained version performs similarly well with the 

unconstrained version. Although theoretically constraints will 

reduce the classification model performance, our data shows 

that the constrained cLP sometimes even outperforms the 

unconstrained version. This suggests that besides the benefit of 

including biomedical knowledge in the model, the constrained 

cLP may also achieve better classification performance. 

Keywords—constrained linear programming; feature 

selection; biological constraints. 

I.  INTRODUCTION 

Modern biotechnologies have produced huge amount of 
biomedical knowledge and insights. Various tedious low-
throughput screening technologies detected the phenotype-
associated genes or other genomic functional elements by 
knocking out or knocking down one of these elements at a 
time, e.g. RNAi [1] or CRISPR/Cas9 [2, 3]. Genome-wide 
association studies and other high-throughput technologies 
were also widely used to screen the samples for millions of 
features at a time [4]. All these knowledge facilitates the 
frequent update of the biomedical textbooks, e.g. the 11th 
version of the Lewin's GENES [5]. 

Biomedical data is being generated at an accelerated 
speed. Two years ago, Illumina's HiSeq 2000 machine may 
produce 200 Gbp genomic data with 100 bps per read within 

a week. The recently released X10 version of HiSeq 
achieves 1,800 Gbp total data production with 150 bps per 
read, and the running time of a full run is less than 3 days 
[6]. Such data amount leads to millions of features for a 
single sample [7], and causes major challenges for feature 
selection algorithms. 

The majority of feature selection algorithms do not 
consider the existing biomedical knowledge in the model 
training. Taking a binary classification problem as an 
example, a feature selection algorithm usually tries to find a 
subset of features so that the intra-class pair-wise distance is 
significantly smaller than that of the inter-class distance. 
The ranking-based algorithm proposes a measurement of 
how discriminative each feature is between the two classes 
of samples, and some widely used ranking algorithms 
include t-test and Wilcoxon-test. And it still remains to be 
resolved how the existing biomedical knowledge is 
incorporated into the training of the feature selection model. 

This work proposes a novel linear programming model 
with the biomedical knowledge based constraints. The 
comparative study shows that the proposed algorithm 
outperforms the existing feature selection algorithms in the 
measurements of sensitivity, specificity and accuracy. The 
experimental data also supports that the constrained linear 
programming model performs similarly well with the 
unconstrained version, and better on some datasets. 
Biological insights are also discussed about the features 
selected by the constrained model. 

II. MATERIAL AND METHODS 

A. Problem Model and Datasets 

This study investigates the binary classification 
performance using the features selected by the feature 
selection algorithms. Firstly, a binary classification problem 
is defined to have two sample sets, i.e. the Positive and 
Negative sets usually consisting of the disease samples and 
controls, respectively. The optimization goal is to find a 
classification model that may accurately separate the two 
sample sets [8]. 

Four widely used datasets are used in this study to 
compare the classification performances based on the 
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features selected by the investigated feature selection 
algorithms. The gene expression datasets of prostate cancer 
[9] and CNS cancer [10] are downloaded from the Broad 
Institute Genome Data Analysis Center  
(http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi). 
Two binary classification datasets on gastric cancer [11] are 
downloaded from the NCBI Gene Expression Omnibus 
(GEO) database with the ID GSE29272. The four datasets 
are denoted as Prostate, CNS, Gastric1 and Gastric2, 
respectively. 

B. Linear Programming Model with Constraints (cLP) 

This study proposes a formula of biological knowledge-
based constraint for the linear programming model, denoted 
as cLP, to exploit the merits of both biological knowledge 
and the determined optimal solution of linear programming. 
Linear programming problem is theoretically proven to be 
solvable within a polynomial time [12], and have been 
widely used in many optimization problems [13, 14]. 

For a given binary classification problem Snp with n 
samples and p features, the proposed algorithm cLP aims to 
optimally separate the positive samples from the negative 
ones. Let nt and nf be the numbers of positive (T) and 
negative (F) samples, respectively. And we have n=nt+nf. 
Each feature has its weight ωi, where i=1, 2, …, p. The 
linear programming model cLP(fFS) is described in the 
following formula, where fFS is the subset of features that 
must be retained in the final selected feature subset. 
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The average level of the ith feature of the positive and 
negative samples are denoted as mt

i and mf
i, i=1, 2, …, p, 

respectively. The first term of the optimization goal in 
formula (1) tries to minimize the sum of the weights of all 
the features, where only the selected features have non-zero 
weights. The second term in the optimization function 
measures the relaxed form of error rates [13]. The formula 
(2), (3) and (5) make sure that the positive and negative 
samples are closer to their respective centroid than to the 
other one. Formula (4) normalizes the feature weights 
between 0 and 1. Formula (6) makes sure that the pre-

defined features in fFS have weights no smaller than θ.  is 
evaluated in the range [0, 0.5] increased by 0.001, until the 
weights are converged. 

The aforementioned linear programming model is solved 
by the lpSolveAPI in the software R version 3.1.1. 

C. Classification Performance Measurements 

Comprehensive comparisons are conducted to evaluate 
how cLP(fFS) performs when compared with the other 

feature selection algorithms. The four other feature selection 
algorithms used in this study are Prediction Analysis for 
Microarrays (PAM) [15], Regularized Random Forest (RRF) 
[16], t-test (Ttest) [17] and Wilcoxon-test (Wtest) [18]. The 
parameters of PAM was optimized by the amount of 
shrinkage, which is associated with the final list of selected 
features. The tree node impurity of RRF is measured by the 
Gini index [19], and all the features with positive Gini index 
are selected for further investigation. cLP, PAM and RRF 
will automatically return the optimized subset of features. 
Ttest and Wtest return only a measurement for each feature, 
and an ordered list of features based on this measurement. 
The numbers of features by Ttest and Wtest will be the same 
to that of the algorithm cLP. 

The selected features are used to train a classification 
model using two classification algorithms, i.e. Support 
Vector Machine (SVM) [20] and Naive Bayes (NBayes) 
[21]. The Radial Basis kernel is chosen for the SVM model. 
5-fold cross validation (5FCV) strategy is used to calculate 
the classification performance measurements, i.e. sensitivity 
(Sn), specificity (Sp) and accuracy (Ac), as similar in [22-
24]. Sn, Sp and Ac are defined to the percentages of 
corrected predicted positive samples, negative samples and 
all the samples, respectively.  

This study focuses on the hypothesis that fixing 
biological knowledge in the classification modeling only 
leads to minor decrease in the classification performance, 
and performs similarly well to or better than the other 
feature selection algorithms. The default parameter values 
of data mining algorithms are usually optimized by the 
existing software for general purposes. So all the other 
parameters use the default values provided by the software 
R version 3.1.1. 

III. RESULTS AND DISCUSSION 

A. cLP(fFS) versus cLP({}) 

Firstly, a comparison is carried out to investigate 
whether fixing a few features in the model will significantly 
decrease the overall binary classification performance. By 
fixing a few features, the solution sub-space is smaller than 
the original one and theoretically the new optimal solution 
cannot outperform the optimal solution in the original 
solution space. For a given subset of features selected by 
cLP(fFS), the binary classification performance is calculated 
for the two classification algorithms, i.e. SVM and NBayes, 
on the aforementioned four datasets. All the four datasets 
are gene expression profiles produced by the microarray 
technology on cancer samples and their controls. The gene 
P53 is well known for its driving role in cancer development, 
verified by many experimental studies [25]. But its 
expression alone cannot classify whether an individual has a 
specific type of cancer. So it's intriguing to investigate 
whether P53 together with a few other chaperons may 
generate a good cancer classifier. The expression level of 
each probeset in a microarray platform is defined as a 
feature in the gene expression profile, and different 
microarray platform has different set of probesets. Table 1 

2014 The 8th International Conference on Systems Biology (ISB)
978-1-4799-7294-4/14/$31.00 ©2014 IEEE

147 Qingdao, China, October 24–27, 2014



gives the probesets for p53 on each microarray platform of 
the dataset. 

TABLE I.  SUMMARY OF FEATURES TO BE FIXED IN THE SELECTED 

FEATURE SUBSETS FOR THE FOUR DATASETS. COLUMN “NUMBER” IS THE 

NUMBER OF FEATURES FOR P53 IN EACH DATASE. COLUMN “FFS” GIVES THE 

IDS OF ALL SUCH FEATURES 

Dataset Number fFS 

Prostate 3 1974_s_at, 31618_at, 1939_at 

CNS 1 M22898_at 

Gastric1 2 211300_s_at, 201746_at 

Gastric2 2 211300_s_at, 201746_at 

 

(a) 

 

(b) 

 

(c) 

Fig. 1. Histogram plots of the binary classification performance of the 

selected features. Each dataset is evaluated by the two feature selection 

algorithms cLP(fFS) and cLP({}), and the two classification algorithms 

SVM and NBayes. The classification performance is measured by (a) 
overall accuracy Ac,(b) sensitivity Sn and (c) specificity Sp, averaged over 

the 30 runs of the 5FCV strategy. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Comparison of the binary classification accuracies Ac of the two 

classification algorithms SVM and Nbayes using the features selected by 

the five feature selection algorithms, i.e. cLP(fFS), PAM, RRF, Ttest and 
Wtest. The averaged value Ac is calculated over 30 runs of the 5FCV 

strategy over the datasets (a) Prostate, (b) CNS, (c) Gastric1 and (d) 

Gastric2. 
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The two versions of cLP algorithm, i.e. cLP(fFS) and 
cLP({}), perform similarly on all the four datasets, as in Fig. 
1. The features fixed in our algorithm appear in the final set 
of selected features for the classification modeling, and the 
experimental participants/people will be predicted as having 
the disease or not. As expected, cLP({}) outperforms 
cLP(fFS) in most cases, with a minor increase in Ac. The 
maximal increase 2.3% in Ac is obtained when using 
NBayes on the dataset CNS, as in Fig 1 (a). The sensitivity 
is just increased by 0.8% in Fig. 1 (b), but the specificity has 
the largest increase of 3.4% compared with cLP(fFS) in Fig. 
1 (c). The decrease of classification performance of cLP(fFS) 
never exceeds 3.0% for all the other datasets using both 
SVM and NBayes. Fig. 1 also shows that the fixation of two 
features for the dataset Gastric2 does not reduce and even 
slightly increases the classification performances. 

B. cLP versus the other feature selection algorithms 

The comparative study with the other feature selection 
algorithms is also conducted to investigate whether cLP(fFS) 
performs reasonably well. The overall accuracy averaged 
over 30 runs of the 5FCV strategy is plotted in Fig. 2. The 
pre-fixed feature subset fFS consists of the features of gene 
p53. 

cLP(fFS) outperforms the other feature selection 
algorithms in most combinations of classification algorithms 
and datasets, as shown in Fig. 2. The features selected by 
cFS(fFS) achieve the top 2 accuracies among the 5 feature 
selection algorithms and 2 classification algorithms on the 
datasets Prostate and Gastric1. Ttest achieves 87.3% in Ac 
when using the classifier SVM, which is slightly better than 
the next two top-ranked classification models of cLP(fFS) 
combined with the classifiers SVM (85.8%) and NBayes 
(86.6%), respectively. Wtest works best with the classifer 
SVM with 99.9% in Ac, which is slightly better than the Ac 
99.3% achieved by cLP(fFS) combined with both SVM and 
NBayes. Although there are two models (Ttest+SVM(CNS) 
and Wtest+SVM(Gastric2)) slightly better than the feature 
selection algorithm cLP(fFS), the experimentalists may be 
more confident in validating the cLP(fFS) models with the 
integration of their biological knowledge using the precious 
resources. 

Our data shows that classification algorithms perform 
differently on individual datasets, e.g. RRF and the two 
ranking algorithms do not perform well on the dataset CNS. 
This may be due to that feature selection algorithms have 
different assumptions and optimization goals, and will work 
best on the datasets that fit these conditions. For example, 
Ttest assumes that the data follows a normal distribution, 
whereas Wtest has the assumption that the paired data are 
sampled randomly and independently. Fig. 2 suggests that 
the datasets Gastric1 and Gastric2 are easily separable by all 
the five feature selection algorithms, whereas the algorithms 
perform significantly different on the datasets Prostate and 
CNS. cLP(fFS) performs the best and the second on the 
datasets Prostate and CNS, respectively. And Ttest performs 
slightly better than cLP(fFS) on the dataset CNS. The data 
also suggests that it's important to evaluate how accurately 

the existing data mining algorithms perform on individual 
dataset. 

C. cLP(fFS) selected features align with the existing 

cancer biomarkers 

We investigate the biological functions of the 24 
features selected by cLP(p53) on the dataset Gastric2. After 
excluding the two features/probesets of the gene p53, each 
of the other 22 features corresponds to a gene, and 10 of the 
22 genes are known to be linked with the gastric cancer. 

7 genes are known to be involved in the regulation of 
tumor development and metastasis. Cell proliferation is one 
of the major biological processes that are required by the 
tumor progression, and there are 5 such genes in the 
cLP(fFS) selected features, including the prostate stem cell 
antigen PSCA (205319_at) [26], the homeobox A10 (TF) 
HOXA10 (213150_at) [27], the sclerostin domain 
containing 1 SOSTDC1 (213456_at) [28], the S100 calcium 
binding protein A7 S100A7 (205916_at) [29], and the 
biglycan BGN (213905_x_at) [30, 31]. There are two tumor 
suppressor genes, i.e. the inhibin, beta A INHBA 
(210511_s_at) [32, 33] and the sulfatase 1 Sulf 1 
(212344_at) [34]. 

The three other genes are also associated with the onset 
and development of gastric cancer. The interleukin 1 
receptor antagonist IL1RN (216244_at) [35] and the 
procollagen-lysine - 2-oxoglutarate 5-dioxygenase 3  Plod3 
(202185_at ) are known to be gastric cancer biomarkers 
with their genomic alternations [35, 36]. The last gene, the 
period homolog 2 (Drosophila) PER2 (205251_at ), encodes 
a Period family gene, shows up- and down- regulated 
expression levels in the gastric tumor tissues, when 
compared with the normal controls [37] and tumor-adjacent 
tissues [17], respectively. 

Generally speaking, 10 out of the 22 genes are strongly 
associated with the tumor regulation and progression. 

IV. CONCLUSIONS 

This study explores the possibility of combining the 
merits of both biomedical knowledge and data mining 
algorithms, by adding constraints for the linear 
programming model. The proposed constrained linear 
programming algorithm, cLP(fFS), outperforms the other 
feature selection algorithms in almost all the cases. The 
embedded constraints will also facilitate the vast amount of 
biological knowledge from the literature and experienced 
biomedical researchers into the classification modeling. We 
believe that cLP(fFS) will greatly facilitate the training of 
biologically meaningful classification models and 
hypothesis-driven biomedical biomarker detections. A 
comprehensive comparison of how the parameters may be 
optimized and impact the classification performance will be 
investigated in the future work. 
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