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Abstract—Human housekeeping genes (HKGs) are widely ex-
pressed in various tissues, which involve in cell maintenance or
sustaining cell function, and are often taken as experimental
control and normalization references in gene expression experi-
ments. Based on literature curation and up-to-date databases,
we construct a large-scale human protein-protein interaction
network (HPIN) and a HKGs subnetwork. Through the topo-
logical features of HKGs in the HPIN, we characterize the
topological features of human HKGs. Our results indicate HKGs
are with very large average degree, k-shell, betweeness, semi-
local and eigenvector centralities, clustering coefficient, closeness,
PageRank and motif centrality, which are all higher than that of
the HPIN. Among the nine indexes, HKGs are with the average
betweeness about 7 times larger than that for the HPIN, but they
are also with the largest coefficient of variant (CV). The closeness
of HKGs is with the smallest CV and very large median. Based on
ROC analysis, we find most of the indexes and their compositions
can be used to predict HKGs, with prediction accuracy around
80%. Especially, the prediction accuracy of the closeness can
achieve as high as 82.36%. The investigations shed some lights
on the characterization and identification of human functional
genes, which have potential implications in systems biology and
networked medicine.

I. INTRODUCTION

With the development of high-throughput technologies, such
as the yeast two-hybrid and mass spectrometry technique,
large-scale protein-protein interaction networks have been
facilitated to be constructed. Many databases have been es-
tablished to provide the binary interactions among proteins
for various organisms, such as the Human Protein Reference
Database (HPRD) [1], the BIOlogical General Repository
for Interaction Datasets (BioGRID) [2], the Online Predicted
Human Interaction Database (OPHID) [3]. The increasingly
accumulated datasets and the arrival of the era of big data
facilitate the exploration of the structural characteristics of
large-scale HPIN.

Human proteins are encoded by genes, therefore, proteins
in the HPIN correspond to human genes. From different
perspectives, human genes can be classified into different
categories. From the perspective of whether a gene is widely
expressed in various human tissues or not, human genes can
be classified into HKGs and tissue-enriched genes (TEGs)
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[4]- [8]. From the perspective of whether mutations on a
gene is lethal or not, human genes can be classified into
essential genes and viable genes [9]. In this paper, we mainly
consider the HKGs. HKGs are genes that broadly express
in various tissues, which involve in some way in processes
necessary to the survival of a cell. Some HKGs may involve
in sustaining cell function, while others may involve in cell
maintenance. HKGs tend to produce proteins at steady rates,
and errors in their expression can lead to cell death. Like a
housekeeper, they keep a cell running smoothly so that it can
continue to function, and they also contribute to the overall
function of larger organisms [4]- [8]. TEGs only express and
function in a few specific human tissues. It is reported that
HKGs are more conserved than the other genes and evolve
more slowly [7]. Therefore, HKGs have been widely used as
experimental controls and normalization references in gene
expression experiments [4]. Since TEGs are highly expressed
in one or a few specific tissues or cell types, they can serve as
biomarkers of particular tissues or biological processes, some
of them may act as drug targets [4].

Characterization and identification of HKGs and TEGs have
attracted an increasing attention over the last decades [4], [5],
[8], which are mainly based on microarray gene expression
profiling analysis. For example, in 2008, Zhu et al. [5] reported
1206 HKGs from microarray data, which are widely expressed
in 18 human tissues. In 2009, She et al. [4] found 1522 HKGs
and 975 TEGs from 18149 human genes, where the HKGs are
highly expressed in 42 human tissues. However, few results
have been reported on the topological features of HKGs in
the HPIN. With the rapid development of complex network
theory, it is feasible to explore the topological characterization
of HKGs in the HPIN.

Motivated by the above problems, we will construct an
up-to-date large-scale HPIN and investigate the topological
characterization of HKGs in the HPIN. The rest of the paper
is organized as follows. We construct the HPIN and the
subnetwork of HKGs in Section II, simultaneously, we inves-
tigate the structural characteristics of these networks. Section
IIT explores the topological characterization of HKGs in the
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HPIN. Discussions and conclusions are in the last Section IV.

II. HUMAN PROTEIN-PROTEIN INTERACTION NETWORK
AND HKGsS

A. Human protein-protein interaction network

Based on up-to-date data collected in the BioGRID, HPRD
and curated from the literature [10], we constructed the HPIN.
The BioGRID covers literature-curated data from the year
1970 to Jan. 2014. Till January 2014, the BioGRID database
has collected 153379 interactions among 16287 proteins. The
HPRD has included 39008 interactions. Except the data from
the BioGRID and HPRD, binary protein-protein interactions
have been also widely reported in many literature [10], [11].
For example, in 2005, based on the Y2H high throughput
technology and literature curation, Rual et al. [10] constructed
a connected HPIN with 2784 nodes and 6438 interactions. By
integrating the data from BioGRID, HPRD and literature [10],
we derive a raw HPIN, which contains 17423 proteins and
178469 interactions. The giant connected component (GCC)
contains 17311 nodes and 151412 interactions. The average
degree (k) of such connected network is 17.4932. It is esti-
mated that the complete human protein interactome contains
about 25000 gene-encoding proteins and more than 375000
interactions among them [12], [13]. Therefore, though the con-
sidered HPIN may still suffer from the sampling effect [14],
they cover almost 70% of the complete human interactome, the
investigations on such large-scale network can provide hints
for the understanding of the complete interactome.
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Fig. 1. (a) Degree distribution of the HPIN. (b) The average clustering
coefficient C'(k) as a function of degree k indicates hierarchical modularity
of the HPIN.

Statistical indexes for the GCC of the HPIN are shown in
Tab.1, where we have shown its average degree (k), maximum
and minimum degrees K4z, Kmin, network diameter D, aver-
age path length APL, clustering coefficient C*, small-world
index SW, Pearson correlation coefficient PCC, Power-law
exponent PLFE. Here, C* is defined as the ratio of number of
triangles to number of paths of length 2 [15]. SW is defined
as follows [17].

% /C:and (1 )
APL/APL,qng’

where C*,C7 . . are the clustering coefficients for the H-
PIN and the randomized networks. APL,.,q is the average

SW =

path length for the randomized networks. For Erdos-Rényi
(ER) random networks with n nodes and average degree
(k), the clustering coefficient C, . can be approximated
by Cf... = (k)/n. APL,4,q can be approximated by
APLyang = In(n)/In((k)) [17], [18]. SW > 1 indicates the
small-worldness of the network. PCC is defined in Ref. [15],

[16], PCC < 0 indicates the disassortativity of the network.

TABLE I
STATISTICAL CHARACTERISTICS OF THE HPIN, THE HKGsS AND TEGS
SUBNETWORKS.

HPIN __ OKGs _ TEGs
Row daa_ Nodes 7423 1389 697
Interactions 178469 10306 246
Node 7311 1346 133
Edge 151412 10306 179
(k) 174932 153135  2.5942
Femaz 9638 1216 27
kmin 1 1 1
D 1 6 1
Gee APL 27736 21520 4.6149
cc 02281 04163  0.1548
c* 00070 00366  0.0334
SW 85168 39471  1.9900
PCC  -00637 -0.1338 -0.1751
PLE 18300 -1.4900  -1.6810

From Tab.l, we can conclude that the HPIN is sparse, with
connection density 0.1011%. The APL,C* and SW in Tab.l
indicate the HPIN is small-world. Fig.1(a) shows the degree
distribution of the HPIN, where we can conclude that it is
power-law, and with PLE = —1.83. Moreover, the PCC
of the HPIN is -0.0637, which indicates the disassortativity.
To verify whether the HPIN is with modularity, we draw the
average clustering coefficient C(k) as a function of degree
k, as shown in Fig.1(b). Here, C'(k) is the average clustering
coefficient of nodes with degree k [19], where the clustering
coefficient C; for node i is defined as C; = 2n;/(k;(k; — 1))
[20]. k; is the degree of node ¢, n; represents the number
of links among the k; neighbors. From [19], if C'(k) versus
k distributes along the line with slop —1 in log-log scale,
then the network is with modular structure. From Fig.1(b), we
can conclude that the HPIN is hierarchical modular. Existing
investigations have illustrated that the yeast protein-protein
interaction network is sparse, small-world, scale-free, disassor-
tative and with modularity [21], [22], our investigations clarify
that the HPIN has similar properties as that for the yeast.

B. Housekeeping genes

In the following, the HKGs and TEGs predicted in Ref. [4]
will be used to investigate the topological characteristics of the
HKGs. Firstly, we construct the connection network for HKGs.
Among the 1522 HKGs in Ref. [4], 1389 HKGs and 10306
interactions are in the HPIN, where 1346 proteins are con-
nected. 697 of the 975 TEGs are nodes in the HPIN, and 138
nodes are largely connected through 179 links. The network
for the HKGs are shown in Fig.2. The statistical indexes for
the networks of HKGs and TEGs are shown in Tab.I, where
we can conclude that the two subnetworks are with similar
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Fig. 2. The connection network of the 1346 HKGs in the HPIN. Clusters
with different colors are with different degrees.

properties as the HPIN. The APL for the network of HKGs
is 2.1520, which means that any two HKGs can connect with
each other through about two interactions. Whereas, there is
a two-fold increase in the APL for the network of the TEGs.
Moreover, the HKGS and TEGS are both small-world, with
SW indexes 3.9471 and 1.9900, respectively. Furthermore,
negative PCC values indicate the two subnetworks are all
disassortative.

ITII. TOPOLOGICAL CHARACTERIZATION OF HKGS IN THE
HPIN

A. Structural features of HKGs in the HPIN

To characterize the HKGs in the HPIN, we compute the
statistical features of each node in the HPIN and extrac-
t the features for the HKGs. Generally speaking, degree
[15], betweeness [23], k-shell [24], semi-local centrality [25],
closeness [25], PageRank [26], eigenvector centrality [15],
clustering coefficient [15] and network motif centrality [22],
[27] can characterize the structural importance of nodes in
a complex network. In the following, we compute the nine
indexes for the HPIN. It is noted that for the network motif
centrality, we have only considered the 3-node fully connected
motif [22]. Hereinafter, we derive the average indexes for
all nodes in the HPIN, and the average indexes for the
1389 HKGs and 697 TEGs in the HPIN, as summarized in
Tab.Il. Here, k, ks, b, cc, s, ev, p, cls, mc denote the degree, k-
shell, betweeness, clustering coefficient, semi-local central-
ity, eigenvector centrality, PageRank, closeness and motif
centrality, respectively. Std denotes standard deviation. C'V'
denotes the coefficient of variation, which is defined as the
ratio of the standard deviation to the mean. The CV is a
normalized measure of dispersion of a probability distribution
or frequency distribution. To compare among different indexes,
we normalized the average indexes for the HKGs and TEGs
by the corresponding average values for the overall HPIN. The
normalized indexes and CV of the nine indexes are shown in
Fig.3.

30F ~=o= HKGs
25¢ =o= TEGs

Normalized average + CV

k ks b cc S ev p cls mc

Fig. 3. Normalized and CV of the nine indexes for the 1389 HKGs and 697
TEGs.

From Tab.Il and Fig.3, we can see that all the average
indexes for the HKGs are larger than that for the HPIN.
Whereas, the average indexes for the TEGs are all lower
than that for the HPIN. Especially, the average betweeness
and motif centrality for the HKGs are more than five times
larger than that for the HPIN. Moreover, the HKGs are with
average degree more than 3 times larger than the average of the
HPIN. The clustering coefficient and closeness of the HKGs
are a little larger than that for the HPIN. However, among the
nine indexes, the betweeness values of the HPIN and HKGs
have the largest C'V, which indicates that although the average
betweeness of the HKGs are very high, its distribution is
more decentralized than the other indexes. Additionally, for
the HKGs, the standard deviation Std and C'V' of the degree,
PageRank and motif centrality are all very large. Whereas,
for the HKGs, the closeness, semi-local centrality, clustering
coefficient and k-shell have very small C'V. The median of
the closeness for the 1389 HKGs is 2.380e — 5, which is
much larger than the average; while the median of the other
indexes are all smaller than their averages. The large average
betweeness of the HKGs indicate that they tend to act as
bottlenecks or bridges in the HPIN. The large motif centrality
for the HKGs reveal that the HKGs tend to frequently involve
in the triangle motifs, and act as building blocks of the HPIN.
The large average degree indicate the HKGs tend to be hubs
of the HPIN. For the HKGs, the large average and median
of the closeness and the smallest C'V indicate most of the
HKGs are with much larger closeness than the other nodes.
In summary, the HKGs are with marked structural features,
which facilitate the characterization and identification of them
through topological structures of the HPIN.

B. ROC analysis

ROC (Receiver Operating Characteristic) curves are widely
used in the area of medical tests and signal processing, which
can evaluate the performance of a new test [28], [29] . The
general idea of such analysis is as follows. Suppose the
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TABLE 11
STATISTICAL CHARACTERISTICS OF NINE STRUCTURAL INDEXES FOR THE HPIN, HKGs AND TEGS.

HPIN HKGs TEGs
Index | Average Std CvV Median Average Std CvV Median Average Std CV Median
k 17.493 88.019 5.032 5 56.038 277.054 4.944 22 9.6399 18.7116 1.9411 4
ks 8.930 10.017 1.122 5 19.596 13.783 0.7034 17 6.4548 6.995 1.08437 4
b 3.155¢e4 1.48e6 46.889  407.292 | 2.138e5 5.187e6  24.264  7.856e3 1.184¢e4 4.693e4 3.9652 246.763
cc 0.228 0.278 1.220 0.1429 0.2341 0.201 0.8587 0.182 0.1673 0.253 1.5117 0.0635
s 7.973¢7 7.782¢7 0976  9.814e7 1.595e8 1.180e8  0.7396  1.361e8 4.222¢7 5.514¢7 1.3062 1.073e7
ev 0.0039 0.0065 1.6596  0.0033 0.0099 0.0157 1.5875 0.006 0.002 0.0028 1.4121 7.339¢-4
P 1.000 6.072 6.072 0.424 29127 20.0326  6.8776 1.1697 0.6583 0.9193 1.3964 0.4004
cls 2.099e-5 3.147e-6  0.150 2.33e-5 | 2.325¢-5 1.946e-6  0.0837 2.380e-5 | 1.937¢-5 2.964e-6 0.153 1.840e-5
mc 82.622 865.939  10.481 3 437.217 2.863e3 6.549 44 16.463 77.654 4.7167 1

concerned n subjects can be classified into positive (normal
or important) or negative (abnormal or unimportant), and the
actual classification of the n subjects has been known, which is
called gold standard. We have a new measure, and we want to
evaluate the performance of such measure on the classification
of all the subjects. If we take a threshold value 7' for the
new test, then the n subjects can be classified into positive
(above T') or negative (below T') through such threshold. By
comparing between the classifications from the new test and
the gold standard, we can derive a contingency table, as shown
in Tab.III. Based on Tab.IIl, we can define several measures
to evaluate the performance of the new test, which are defined
as follows.

fp
= 2
fpr ot in’ 2
tp
tpr = —————, 3
pr tp+ fn )
oo — tp+tn7 @
n

where fp denotes the number of false positive nodes, which
are actually the number of nodes which are positive in the
new test but negative in the gold standard. Similarly, tn
represents the number of true negative nodes, tp and fn
denote the number of true positive and false negative nodes,
respectively. fpr,tpr are therefore called false positive rate
and true positive rate, respectively. acc defined in eq.(4) is
called the accuracy of the new measure under the threshold
value T

TABLE III
CONTINGENCY TABLE OF THE FOUR OUTCOMES FROM THE NEW TEST
AND THE GOLD STANDARD.

Gold standard

Condition positive  Condition negative

Test positive
Test negative

True positive: tp False positive: fp

Test outcome . .
False negative: fn True negative: tn

Given a threshold value 7', one can obtain a coordinate point
(fpr,tpr). When the threshold value T is taken over the range
of the new measure and we plot the corresponding points in
two dimensional coordinate system, we can derive the ROC
curve. Suppose the range of the new measure is [A4, B], when
T = A, then all the subjects are treated as positive and tn =

0,fn =0, fpr = 1,tpr = 1; when T = B, all the subjects
will be treated as negative from the new test, and tp = 0, fp =
0,tpr = 0, fpr = 0. Therefore, the ROC curve must locate in
the area [0, 1] x [0, 1], and (0, 0), (1, 1) are two extreme points
of the ROC curve. The area under the curve (AUC) of ROC
can measure the accuracy the the new test. The bigger AUC,
the better the new test will distinguish between the positive
cases and negative ones. If AUC' = 1, the new test can act as
a perfect classifier. If 0.5 < AUC < 1, the new test is better
than a random classifier. For the tests with very high AUC,
with properly chosen threshold values, one can use them to
predict the abnormal subjects.

C. Characterization of the HKGs via ROC curves

In the above subsections, we have discussed the structural
features of HKGs in the HPIN and reviewed the idea of ROC
analysis, in the following, through ROC curves, we discuss
the characterization and identification of HKGs in the HPIN.

1 F#w*
- 0“’
g LA
w-i(

K -o- degree
ke k—shell
N4 —+betweeness
=A-  cluster coefficient
=9~ semi-local i
eigenvector
-#- PageRank 1
P closeness
- @ - motif centrality

True positive rate

0.4 0.6 0.8 1
False positive rate

Fig. 4. ROC curves for the nine measures. The nine indexes for the 1389
HKGs and 697 TEGs in the HPIN are used to plot the ROC curves.

Since there are 15225 nodes with unknown types in the
HPIN, we only consider the HKGs and TEGs, and take the
1389 HKGs as positive and the 697 TEGs as negative ones.
Based on the nine indexes for the 2086 genes in the HPIN, we
evaluate the performance of each index in characterizing the
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HKGs. For each index, we take 21 threshold values T to derive
the ROC curve. Each index under each T acts as a classifier
and classified the 2086 nodes into positive and negative. The
T is taken as top 0%, 5%, ...,95%,100% of a index. Fig.4
shows the ROC curves for the nine indexes.

From Fig.4, all the ROC curves for the nine indexes are
with AUC > 0.65. Especially, the AUC for the closeness,
semi-local centrality and eigenvector centrality are the largest,
which are actually 0.8763, 0.8741 and 0.8706, respectively.
This indicates that they can more effectively predict the HKGs.
Except the three indexes, the AUC for the motif centrality
and k-shell are 0.8301 and 0.8085, and indicate that they
are another two effective indexes to identify the HKGs. The
clustering coefficient is with the lowest AUC, which are
0.6778. The AUC for the betweeness is 0.7333, which is
only bigger than that for the clustering coefficient. For the
closeness, when T' = 60%, acc achieves its maximum value
0.8236. That is, when the closeness is used to predict HKGs
in the HPIN, the highest accuracy rate will be 82.36%.

MIN MIN

08fem Iz mmnnn S T EELLCTEETT

, 078]

AuC

sirk
& Smals

0.76|

0744

0 50 100 00 450 500 0 00 450 500

o2

300 350 300 350
x serial number serial number

(a) (b)

o
3 * o2l
o LTIy s o
sl R N ety . £ o
B T 3
o) . P wamsise
A .
TR ¥ 34 $2LE4 ¥ £ A €84 Agnmana e e .
. o
Zon . . .
el e
o e
o
o PLENR
on]
0.74} *
o
o
on
0 50 100 150 200 250 300 350 400 450 500 0 0 50 100 150 200 250 300 350 400 450 500
oo i i oo i e
(© (d

Fig. 5. (a) AUC and (b) acc under composite index with the MIN operation.
(c) AUC and (d) acc under composite index with the MAX operation.

Following, we investigate whether the compositions of mul-
tiple indexes can enhance the prediction accuracy of HKGs.
We transform the nine indexes for all the nodes in HPIN as
fractional ranks. Suppose the nine indexes for the n nodes
consist of the matrix X = (X1, X, ..., Xg). For X;, if nq
nodes are with the highest value, then the fractional ranks for
the n; nodes are ny /n; for the subsequent n, nodes are with
the second largest value, their fractional ranks are (ni+mns)/n.
For the n; nodes with the k’th largest value, their fractional
ranks are (nq +mns2+...+ng)/n. Obviously, for the nodes with
the lowest value in X, their fractional ranks are 1. Denote
the corresponding fractional ranks of matrix X as X*, then
the values in X* must be in the interval (0,1]. Based on
all the possible compositions of the nine columns in X*,
we consider two cases. Firstly, given a composition with j
indexes, for each node, we take the minimum of the j indexes

as a composite index, and compare the classification of genes
according to this new index with the gold standard. For the
second case, we consider the maximum of the j indexes as
a composite index. For simplicity, we call them as the MIN
case and MAX case. For the nine indexes, there are totally
511 compositions, which include indexes ranging from one to
nine. For each composition, we obtain the AUC of ROC and
the corresponding highest acc. Fig.5 shows the AUC and acc
for all the 511 compositions under the two cases.

From Fig.5, we can see that the AUC for most of the
compositions under the MAX case are above 0.8, and the
corresponding acc are all around 0.8, which indicate the
MAX case is more effective in predicting HKGs than the
MIN case. Moreover, under both cases, with the increasing
of indexes included in the composite index, less AUC can
achieve 0.85, and less acc values are higher than 0.8. This
indicates that with more indexes considered, the prediction
abilities can not be effectively enhanced, but the differences
on the prediction abilities of different compositions tend to
be smaller. The nine hallow circles on the left of each panel
correspond to the nine single indexes, where the closeness,
semi-local and eigenvector centralities are with almost the
highest AUC and acc. Therefore, Fig.5 also indicates that
some single indexes can well predict the HKGs. Though the
compositions of several indexes can not effectively enhance the
prediction ability, the AUC and acc for many of the composite
indexes can achieve 80%.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we constructed a large-scale HPIN. Based
on the statistical analysis of the HPIN and HKGs, we find
the HKGs in the HPIN are characterized with much higher
average degree, k-shell, betweeness, clustering coefficient,
semi-local centrality, eigenvector centrality, PageRank and
motif centrality than the other nodes. Based on ROC analysis,
we find the closeness, semi-local and eigenvector centralities
are with the highest prediction accuracy.

The average betweeness of the HKGs is more than 7 times
larger than the HPIN, but it has very large CV and very
small median. Whereas, the closeness is with the smallest CV
and very large median, the median is larger than its mean.
The prediction accuracy of the betweeness is very low, while
the closeness is with the highest prediction accuracy. This
indicates that the prediction accuracy of an index is not only
related to its mean, but also related to its standard devia-
tion, CV and median. Fig.6 shows the betweeness, clustering
coefficient, semi-local centrality and closeness for the 1389
HKGs and 697 TEGs in the HPIN. In order to facilitate the
observation, we show these figures in log-log scale. From
Fig.6, we can intuitively see that the betweeness and clustering
coefficient of the HKGs are very dispersive, while the semi-
local centrality and closeness of HKGs tend to be clustered,
and can be easily distinguished from the TEGs.

The related investigations facilitate the identification of
HKGs in the HPIN. For example, by setting the threshold
value T = 0.6, from fractional ranks of the closeness X3 for
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Fig. 6. Indexes for the 1389 HKGs and 697 TEGs in the HPIN. (a)
Betweeness. (b) Clustering coefficient. (c) Semi-local centrality. (d) Closeness.

the rest 15225 nodes in HPIN, we can further identify many
HKGs, and the accuracy will be about 82.36%. It is noted
that, we have only considered nine statistical indexes of the
HPIN, one can extend the related discussions to some other
indexes. It is also noted that, for the composite indexes, we
only consider two cases. It is intriguing to consider some other
composite indexes, such the indexes based on the principle
component analysis [22], [30]. We will discuss these problems
in our future works. The investigations shed some lights on
the characterization and identification of human functional
genes, which have potential implications in systems biology
and networked medicine [31].
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