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Abstract—In microbial communities, the taxonomic structure
and functional capability are highly related. We proposed a
method by considering the combination of taxa and functional
categories to explore the ecological mechanisms of microbial
communities. Using GOS metagenomic samples, we tested this
idea and its effectiveness. The combination of taxonomies and
functional groups could reflect the difference between habitats
and may help to explain the combination adaptability of microbes
to environment.

I. INTRODUCTION

Microbes comprise the most of organisms, living every-
where throughout the ocean, the soil, and human bodies and
so on. They play important roles in the recycle of nutrients,
the degradation of toxins [1] and the maintenance of human
health [2]. However, the organization and function of microbial
community remain mysterious. The diversity of microbes and
their interactions with environmental factors are not well
known due to poor cultivability and their complexity [3].

Fortunately, recent advances in sequencing technologies [4]
have allowed us to investigate the microbes that inhabit oceans,
human bodies and elsewhere. Recent metagenomic studies
began to study the composition of microbial communities and
have found close relationship between phylogenetic diversity
and environmental factors such as temperature and latitude
[5,6]. Several studies focused on the interactions between envi-
ronmental factors and metabolic functions [7]. They found that
many of the environment dependent pathways were associated
with energy conservations such as photosynthesis, oxidative
phosphorylation, carbon and nitrogen fixation.

We note that most studies investigated the taxonomic
and functional diversity individually. However, the commu-
nity structure and metabolic functions are highly dependent.
Different species tend to play different roles and co-exist in a
specific environment [8]. So, when identifying the relationship
between microbes and habitats, the combination adaptability
of taxonomic structures and metabolic capabilities to environ-
mental changes should be considered. We proposed a method
to identify metagenome-environment associations considering
the effect of species abundance and functional enrichment
simultaneously. Many previous methods calculate only species
(or pathways) abundance and derive a one dimension vector for
each metagenomic sample (we call this a univariate method).
Different from this type of methods, we treat the group of taxa
and pathways as a binary variable and get an abundance matrix
for each sample, where each row represents a pathway and
each column stands for a taxa. Besides, by correlation analysis,

the two-tuples of taxonomy and pathway can be revealed to
explain the ecological mechanism of microbial communities.

To test the effectiveness of our proposal, we applied our
method on an ocean metagenomic dataset. The ocean com-
prises 71% of the earth’s surface and is the largest ecosystem
on earth. Vast numbers of bacteria and plankton occur both
at the surface and in deep ocean waters. The global ocean
sampling project expedition [9] provide us a comprehensive
dataset to shed light on the role of marine microbes. Here, we
used 59 GOS samples from MGRAST to explain the procedure
and effectiveness of our method. The DNA sequences of
whole community were annotated with both taxonomies and
pathways. We obtained a taxonomy and pathway abundance
matrix. This matrix was used to study the association between
environment and taxonomy specific pathways. It showed that
taxonomy*function groups can reflect the difference of sam-
pling habitats. Taxonomy specific pathways with differential
abundance between coastal and open ocean sites, or significant
correlations with temperature are also identified.

II. MATERIALS AND METHODS

A. Materials

We utilized the Global Ocean Sampling (GOS) expedition
from MG-RAST (http://metagenomics.anl.gov/). GOS project
is the largest published one for metagenomics on marine
environment. It gathers ocean surface samples across a transect
from the North Atlantic through the Panama Canal and ending
in the South Pacific [9]. This project generated approximately
eight billion nucleotides present in more than seven million
DNA fragments, providing an unprecedented resource to study
marine microbes and their interactions with the environment.
Currently, 88 samples can be available from MG-RAST. We
obtained 59 samples by filtering those with less 5000 usable
sequences to ensure reliability for the following analysis.

B. Methods

Many studies have explored the relationship between taxa
or functional categories and environment factors. Here, we
propose a method to identify metagenome-environment asso-
ciations by considering the combinatorial effect of taxonomy
abundance and functional enrichment (Figure 1). Taxonomy-
specific functional categories will be identified to explain the
ecological mechanism of microbial communities.

We processed metagenomic sequences of the whole com-
munity started with two types of annotations. One is the
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Fig. 1. The flowchart on the generation of taxonomy and pathway abundance matrix for a sample. Metagenomic sequencing of whole community DNA was
firstly processed in two ways. 1) Taxonomic annotation using LCA based methods or Metacluster, MTR and so on. 2) Functional category classification. Protein
coding regions of the reads are predicted, annotated and assigned to their functional categories, for example, COGs or KEGG pathways. 3) The last step is to
integrate the taxonomic and functional annotation and obtain a taxonomy and pathway abundance matrix for each sample. The marginal distributions are actually
the taxonomic composition or functional profile considered by previous methods.

taxonomic annotation, many computational tools have been
proposed for this task [10-12]. The other is functional an-
notation, i.e, mapping protein coding regions to orthologous
groups, which can be achieved by several tools [13,14]. To
simplify our analysis, we obtained the taxonomic annotations
at class level and functional orthologous groups (or KEGG
Orthologous groups, KO for short) directly from MG-RAST.
Finally, for each sequence, we combine its taxonomic and
functional annotations together and get taxonomy and pathway
abundance matrix for each sample. Taxonomy and pathway
abundance for a sample was calculated by summing the num-
ber of assignments that belongs to the taxonomy and pathway
and standardized by the total number of assignments for this
sample. In our study, we derive a matrix with 166 classes
versus 7660 KOs for each sample. The marginal distribution
of this matrix corresponds to the phylogenetic or functional
abundance as considered in previous studies [6,7].

This taxonomy and pathway abundance matrix can be
specified at different levels, using the hierarchy information of
taxonomic trees from NCBI and functional linkage definition
(e.g., 153 pathways) from KEGG. The abundance of a higher
order node (e.g., class*pathway) is calculated by summing
the abundance of all branch members (e.g., class*KO) in the
hierarchy structure. The abundance of nodes that are members
of more than one higher level nodes (e.g., some enzymes can
take part in multiple pathways) are equally split among higher
nodes. We also get its taxonomic and functional abundance
matrix at class*pathway level and derived a 158 classes*148
pathways matrix for each sample. In a few places, we combine
the results of these two levels together and we analyze at the
class*pathway level in most cases.

C. Wilcoxon-Mann-Witney test to detect differential abundance
groups

We use non-parametric Wilcoxon-Mann-Witney test to
detect taxa or taxonomy specific pathways between 18 coastal
and 20 open ocean habitats with significant differential abun-
dance. For taxa, we only test those with average abundance
>0.1% among 38 habitats (p-value<0.05). For taxonomy spe-
cific pathways, p-values are adjusted to produce a Benjamini
false discovery rate.

D. Correlation analysis

Spearman correlation test was used to identify the corre-
lation between taxonomy specific pathways and temperature.
For those groups, whose non-zero rate (or occurrence rate)
is less than 25% (e.g. 15 in 57 samples) was removed from
correlation analysis. Obtained p-values for these tests were
adjusted for multiple testing using Benjamini-Hochberg false
discovery rates [13]. Taxonomy specific pathways are further
filtered according to adjusted p-values.

III. RESULTS

We began to analyze the difference of taxonomic and
functional structure in all samples and try to relate these
differences to available environmental factors.

A. Taxonomy-specific functional profiles are effective to reflect
sampling differences

Principal components analysis (PCA) has been comprehen-
sively used for analyzing the differences between metagenomic
samples [7]. To assess the performance of taxonomic and
functional composition as community descriptor, PCA is used
for analyzing the diversity and consistency of these 59 samples
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Fig. 2. Visualization of sample distributions using the two leading PCA
dimensions. The variations explained by the first two components are indicated
on the two axes respectively.

revealed by the combinatorial characteristics. We obtained
50 class*pathway features which have the largest average
abundance among 59 samples. As showed in Figure 2, the
samples can generally be classified into different groups. Eight
plus signs indicate samples collected within size fraction, 0.8-
3 µm. It was pointed that more eukaryotic organisms are
included in this range, which effect the accuracy of results
and are often excluded by previous studies [7,15]. Three sites
are obviously deviated from others, among which two are
the hypersaline sample GS033 (salinity 6.54) and freshwater
sample GS020 (salinity 0.01). This may further confirm the
theory that phylogenetic composition is mainly determined by
salinity in extreme environments [16]. Most of the remainders
are involved in coastal and open ocean sites, also some harbor,
reef, and mangrove samples. Generally, we can see that the
costal samples are separated from open ocean samples. This
demonstrates that taxonomy specific pathway abundance is
informative to discriminate samples from different habitats
and collected with different filter size, and provides a new
perspective to further explore metagenomes.

B. Identify differentially enriched taxonomy specific pathways
between coastal and open ocean habitats

As we have mentioned that the marginal distribution de-
rived from the taxonomy and pathway abundance matrix is
actually the taxonomic profile of the community. We obtained
the taxon distribution for 59 samples including 18 coastal
habitats and 20 open ocean habitats in GOS (Table 1). The
average abundance of taxa was shown by class in Figure 2.
We get similar inference of marine microbial diversity with
other studies (e.g., that by using 16S RNA gene sequences)
to explore prokaryotic biodiversity in surface marine waters
[17-19]. Alphaproteobacteria dominants the marine community
(47.6% of total classified sequences) and Cyanobacteria is
the second sdominant taxon (19.9%). Cyanobacteria is more
abundant than reported in previous studies. This may due to
the effect of genome size [20]. We should note that Viruses
and Archaea only make up 0.9%, 0.3% of the total diversity
of GOS respectively. Some taxa have differential abundance

TABLE I.

Taxonomy abundance for GOS samples. 10 dominant taxa are listed
with average abundance in coastal, open ocean and entire GOS

samples. The italic ones are those differentially enriched between
coastal and open ocean habitats with p-value <0.05, by

Wilcoxon-Mann-Witney test.
Taxonomy Coastal Open Ocean 59 samples

Alphaproteobacteria 57.1% 52.2% 47.6%

Cyanobacteria 8.7% 21.6% 19.9%

Gammaproteobacteria 10.7% 7.7% 9.8%

Flavobacteria 6.4% 4.5% 5.1%

Actinobacteria 2.9% 2.1% 3.6%

Betaproteobacteria 2.2% 1.3% 2.4%

unclassified Bacteria 1.8% 1.6% 1.5%

unclassified Viruses 0.9% 0.7% 0.9%

Deltaproteobacteria 0.5% 0.7% 0.7%

Clostridia 0.7% 0.7% 0.6%

between coastal and open ocean habitats based on Wilcoxon-
Mann-Witney test (p < 0.05) (Table 1). Flavobacteria, Al-
phaproteobacteria, Viruses are more abundant in coastal than
in open ocean communities, while Cyanobacteria was more
prevalent in open ocean habitats, as in previous study [18].
Besides, we also observe that Gammaproteobacteria, Betaro-
teobacteria and viruses have differential abundance in coastal
sites.

Using our method, we can also detect taxonomy specific
pathways that have differential abundance between coastal and
open ocean habitats (see Methods). These findings probably
can help to explain which pathways contribute more to tax-
onomic divergences. We observe top 100 taxonomy specific
pathways (q-value <0.0016) in Figure 2, that are differentially
enriched in one habitat. Almost all these taxonomy specific
pathway (95 in 100) belongs to the five differential abun-
dant taxa. Most of these pathways belong to Cyanobacteria.
This may because of its prevalent and important role in
marine ecosystems [21]. Cyanobacteria are fundamental for
oceanic primary production [19] and carbon and nitrogen
fixation [22]. We find that ko00860 (Porphyrin and chlorophyll
metabolism), ko00195 (Photosynthesis), ko00720 (Carbon fix-
ation pathways), ko00190 (Oxidative phosphorylation) are all
differentially abundant in open ocean habitats. Besides, many
pathways involved with carbohydrate metabolism (ko00010,
ko00020, ko00030, ko00040, ko00051 e.g.) and amino acid
metabolism (ko00340, ko00260, ko00330, ko00400, ko00250
e.g.) are also identified. All these pathways are fundamental
and important for microbes. For Alphaproteobacteria, we de-
tected 15 pathways more abundant in coastal habitats. Three
are related to carbohydrate metabolism (ko00630, ko00640,
ko00650) and three for amino acid metabolism (ko00260,
ko00290, ko00350). Two pathways for xenobiotics biodegrada-
tion are enriched in coastal habitats. This may help Alphapro-
teobacteria to resist toxin more abundant in coastal sites. For
viruses, we identify that three pathways are more prevalent in
coastal communities. They include ko00480 for amino acid
metabolism and ko00230 for nucleotide metabolism. These
pathways are crucial for the structure and function of viruses
[23].
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TABLE II.

Taxonomy specific pathways differentially abundant between coastal and open ocean habitat. Taxonomy specific pathways differentially
abundant are ranked by corrected p-value. Top 100 are remained. Rows are taxonomies. Columns are pathways. Column two is total

identified pathways for the taxonomy. Column three to six are pathways falling into the corresponding functional categories.
Taxonomy-pathway Total Energy metabolism Carbohydrate metabolism Amino acid metabolism Nucleotide metabolism

Cyanobacteria 51 6(ko00710, ko00190, ...) 10(ko00010, ko00020, ...) 11(ko00340, ko00260, ...) 2(ko00230, ko00240)

alphaproteobacteria 15 2(ko00680, ko00720) 3(ko00630, ko00640, ko00650) 3(ko00260, ko00290, ko00350) 0

Flavobacteria 14 1(ko00190) 3(ko00010, ko00500, ko00650) 3(ko00340, ko00290, ko00250) 1(ko00240)

gammaproteobacteria 12 1(ko00190) 2 ko00010, ko00620) 3(ko00410, ko00290, ko00250) 0

viruses 3 0 0 1(ko00480) 1(ko00230)

C. Environmental factors can have different effects on taxon-
omy specific pathways

57 GOS samples with available temperature information
are used to analyze the correlation between taxonomy specific
pathways and temperature (both are at class*pathway level
and class*KO level). We identify 355 taxonomy specific path-
ways which are significantly related with temperature (with
corrected p-value< 0.1) (Figure 2) including 65 pathways for
Cyanobacteria, 60 for Gammaproteobacteria and 44 pathways
for Alphaproteobacteria. We see that fewer ones belong to
Alphaproteobacteria in spite of its prevalence in marine habitat.
For most taxonomies, only few pathways are detected which
may result from the diversity of their abundance. For those
significant correlations, both positive and negative associations
are detected. We can see that environmental factors can have
different effects on pathways among different taxonomies
and even within the same taxonomy. Our further analysis
focuses on Alphaproteobacteria and Cyanobacteria because
of their dominance in marine habitat. For both taxa, top 40
pathways filtered by corrected p-values are summed up by
their functional categories in Table 3. Most pathways belong to
amino acid Metabolism, carbohydrate metabolism and energy
metabolism. All are fundamental pathways for microbes as
detected in [7]. For Cyanobacteria, we find that Porphyrin and
chlorophyll metabolism (ko00860, spearman r = 0.50) and
Photosynthesis (ko00195, r = 0.39) are positive correlated
with temperature. Chlorophyll is a component of the photo-
synthetic machinery; it absorbs light energy and is involved in
energy transfer in the course of photosynthesis 1 and 2 [24].
Besides, pathways involved with Carbon fixation (ko00720,
r = 0.47), Nitrogen metabolism (ko00910, r = 0.47), Ox-
idative phosphorylation (ko00190, r = 0.46) are also positive
related with temperature.

We do correlation analysis from class and KO levels and
detect cyanobacteria specific enzymes which are significantly
correlated with temperature (see Table 4). This may help to
explain at more specific levels and find enzymes that contribute
more to the correlation. For example, hydroxymethylbilane
synthase (K01749) taking part in chlorophyll [25] is found to
be positively correlated with temperature. Phosphoglycerate ki-
nase (PGK, K00927) and fructose-bisphosphate aldolase (FBA,
K01623) relating to glycolytic and photosynthetic reactions
in photosynthetic organisms are also identified. Both enzyms
have been found in Synechocystis sp.PCC6803 [26,27]. The
activity of PGK has already been shown to be temperature-
sensitive [28]. Cyanobacterial FBA expressed in transgenic to-
bacco plants can enhance photosynthetic efficiency and growth

Fig. 3. Heatmap for showing the effect of temperature on taxonomy specific
pathways. Only 355 class*pathway groups (corrected p-value < 0.1) are
colored by the signs of their correlation coefficient, red for 1 and green for
-1. Others are all black for 0.

characteristics. Besides some enzymes contributing for amino
acid metabolism have also been detected.

IV. DISCUSSION

In microbial communities, the taxonomic structure and
functional capabilities are highly related. Instead of using
taxonomies or pathways individually, we proposed a method
by considering the combination of taxa and functional cat-
egories to explore the ecological mechanisms of microbial
communities. Using GOS metagenomic samples, we tested the
workflow and effectiveness of this method. The combination of
taxonomies and functional groups could reflect the difference
between habitats and may help to explain the combination
adaptability of microbes to environment.

There are still some problems with this method. We note
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TABLE III.

The distribution of top 40 pathways for cyanobacteria and alphaproteobacteria, which are significantly correlated with temperature and
filtered by corrected p-values.

taxonomy-pathway Carbohydrate metabolism Amino-acid metabolism Energy metabolism Nucleotide metabolism Cofactor vitamins

Cyanobacteria 10 13 6 3 3

alpha-proteobacteria 8 10 6 0 5

TABLE IV.

The pathways and enzymes for cyanobacteria correlated with temperature.
Pathway Rank Functional annotations Enzymes (corrected p <0.1)

ko00400 1 Phenylalanine, tyrosine and tryptophan biosynthesis K01626 K00210 K01609
ko00860 2 Porphyrin and chlorophyll metabolism K00798 K01749
ko00230 4 Purine metabolism K03060 K01756 K00759 K00524 K00860
ko00051 5 Fructose and mannose metabolism K00847 K01623 K00850
ko00010 7 Glycolysis or Gluconeogenesis K00162 K00927 K01623 K00850
ko00910 8 Nitrogen metabolism K02274 K01455 K01092
ko00710 14 Carbon fixation in photosynthetic organisms K00927 K01623
ko00190 16 Oxidative phosphorylation K02108 K05585 K02274 K05572 K05575

that different taxonomies may have different metabolic path-
way composition. However, we download the pathway list
directly from KEGG and used it for all taxonomies. This
may result in artifacts in pathway analysis and needs to
be further considered in similar analysis. Furthermore, when
calculating the taxonomy and pathway abundance by read
counts, there may exit biases due to different sizes of genomes
and pathways. There are also overlaps among pathways; but
we simply assigned KOs equally to all possible pathways. With
the rapid accumulation of metagenomic data, we believe that
these biases could be improved. We expected the proposed
strategy will be more promising in the near future.
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