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Abstract—Discretization serves as an important preprocessing
step for analyzing gene expression data and many algorithms
have been proposed. However, most of the discretization methods
were designed for microarrays. As a new technology, digital
gene expression (DGE) profiles can overcome the limitation of
microarrays and were applied in a widely range. In this paper,
we proposed a novel discretization method for DGE data and the
validations in a time-series gene expression dataset proved the
efficiency of our method.

I. INTRODUCTION

Gene expression data measure the concentration of mRNAs
in given conditions and depict the quantitative characters of
gene products in transcription. Microarray was the first high-
throughout approach to measure the gene expression in a
genome-wide scale [1] . This technique has been widely used
in many sub-fields of molecular biology and produces massive
amount of data [2][3]. However, microarray has its inherent
limitations which result in some drawback of the data [4].

Digital gene expression (DGE) profiles are the tag-based
gene expression profiling with next-generation sequencing
techniques [5]. This approach counts the number of times of
cDNA fragments from a corresponding transcript in a given
sample, so the output is digital, rather than analog [6]. DGE
profiles have significant advantages over microarray for many
functional genomic applications[4].

Gene expression data are formed as matrix whose rows
are genes (or transcripts) and columns are conditions. When
analyzing the gene expression data, discretization is a useful
preprocessing step to lower the dimensions of the data ma-
trix [7][8][9]. Discretization, also called symbolization, means
transformation of the raw data matrix into a symbol matrix.
There are limited number of symbols and each symbol repre-
sents values in a certain scale in the raw matrix. Most of the
current discretization methods were designed for microarray.
Because of the different characters (e.g. scale, distribution, and
others) between the two data types, it is inappropriate to apply
these approaches directly to DGE data.

In this paper, we propose a novel discretization method to
process gene expression data by DGE. Firstly we introduce
the procedure of our method and the dataset used. Then some
indices [10] are selected to compare the effect of k-means
clustering algorithm on different discreted matrices with each
other. To validate our method for feature-based clustering [11],
we use a simple symbol clustering algorithm on the discreted
matrices by different discretization methods and evaluate the
clustering results by a new defined index. This validity index
considers the intra-cluster diameter, inter-cluster distance, and
number of included genes. Our method demonstrates better
performance and can be applied to the RNA-seq data.

II. MATERIAL AND METHOD

A. Material

We generated a time-series gene expression data by DGE:
the transcriptomic profiles of the growth and development
of Volvariella volvacea. The number of unambiguous clean
tags for each gene was calculated as the gene expression
value and then normalized to the number of transcripts per
million clean tags (TPM), which was a standard indicator [12].
This dataset contained 6971 genes with six time points which
represented six key stages in the life cycle, that was: mycelia,
primordia, button, egg, elongation, and mature stages. The raw
sequencing data of digital gene expression (DGE) of mycelia
were submitted to Gene Expression Omnibus (GEO) database
with association NO.GSE43019 [13].

In many studies, genes with low expression values in each
stage were considered to be no information for further analysis.
So we just selected genes with standard deviation of expression
values in all stages larger than 20. There were 963 genes left
after the filtering.

B. The discretization method

There were three steps for our discretization method.

Step 1: fitting.
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Firstly the distribution of the expression values was fitted.
Here we assumed the raw data followed an exponential dis-
tribution, and the single parameter was estimated (see Figure
1).
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Fig. 1. The exponential distribution fitting (the red line) of the gene expression
values in raw data. The estimated parameter is µ = 170.2.

Step two: partition.

Based on the estimated distribution, we then partitioned
the confidence interval into K1 sub-intervals equally (with the
same length). The expression values in a certain sub-interval
were replaced by the mean value of this sub-interval. Here we
usually selected an enough large K1.

Step three: merge.

In this step, we merged the K1 mean values to K clusters
by the hierarchical clustering algorithm. So values of the sub-
intervals whose mean values were assigned to the ith(i =
1, 2, ..., K) clusters and were marked with the same symbol
i, (i = 1, 2, ..., K). A larger K1 could maintain the robustness
of the hierarchical clustering. K was the only parameters of
our method.

The flowchart of our method was in Figure 2.

III. RESULT

A. Validation by K-means clustering

To validate our discretization method, we utilized the K-
means clustering algorithm to cluster on the discretized symbol
matrices, and then compared with the clustering results by
some standard discretization methods. These procedures were
as follows.

(i) Equal frequency discretization (EFD)[14]: this method
divided the interval of expression values into k sub-intervals
so that each sub-interval contained approximately the same
number of expression values.

(ii) K-means discretization (KD)[15]: divided the interval
of expression values of a particular gene into k sub-intervals by
K-means clustering such that adjacent values were classified
into the same sub-interval.

(iii) Column K-means discretization (Cokmeans)[8]: di-
vided the interval of expression values of genes at a particular

Fig. 2. The flowchart of our method. Z is our target matrix.

time point by K-means clustering so that adjacent expression
values at the same time point were classified into the same
sub-interval.

(iv) Bidirectional K-means discretization (Bikmeans)[8]:
for this method, both K-means and Cokmeans were imple-
mented with parameter k + 1, giving every expression value
two discretized value. If the product of the two values was
equal to or greater than x2 and less than (x + 1)2, the final
discretized value of this expression value was x, where x was a
positive integer ranging from 1 to k. Finally, expression values
were divided into k sub-intervals.

There were many validity indices used to measure the qual-
ity of clustering results. Here four famous indices were selected
to evaluate different discretization methods, that is, Calinski-
Harabasz index (C-H index)[16], Davies-Bouldin index (D-B
index)[17], Dunn index[18] and Silhouette index[19]. Among
them smaller D-B index meant better results while the larger
the better for other three indices.

All the considered discretization methods had the common
parameter, the number of symbols K. It was a user-defined
parameter. We assigned the K value of EFD and Cokmeans
from 3 to 9. Because our data contained only six column, the
K value of KD was given from 3 to 6 and the K value of
Bikmeans was from 2 to 5. The indices under all parameters
were calculated and we selected the best values for every index
of every discretization method to compare with each other. The
number of clusters for the K-means clustering algorithm was
assigned from 2 to 20.

Figure 3 shows the comparation of various validity indices
for K-means clustering on matrices discreted by different
discretization methods. It is clear that for all K values of
C-H index, D-B index and Silhouette index and most K
values of Dunn index, our method (the green line) outperforms
other discretization methods. Furthermore, we compared the
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Fig. 3. Comparation of various validity indices for K-means clustering on matrices discretized by different discretization methods. K is from 2 to 20. The
green line represents results by our method. The blue line represents clustering results for raw data.

clustering result on our discretized matrix and the clustering
directly on the raw data. The results show that our method
could outperform the clustering on the raw data (the blue line)
in some cases (Dunn index and Silhouette index for some
values of K).

B. Validation by a symbol clustering method

To further validate our method, we applied a simple symbol
clustering algorithm on the discretized matrices. This algorithm
selected genes with the same symbol list in all time points to
the same cluster. Not all genes might be assigned a class label.
Based on this algorithm we considered three aspects to evaluate
the clustering result: the intra-cluster diameter, inter-cluster
distance, and the number of included genes. The intra-cluster
diameter for each cluster was defined as the average distance
between every sample of this cluster and the cluster center.
The inter-cluster distance for each cluster was defined as the
distance between the center of this cluster and the center of the
nearest cluster. The number of included genes for each cluster
was the size of the cluster. A better clustering result would
have smaller diameters, larger distances between clusters and
include as many genes as possible. To meet the requirement,
we defined a new index called Q-index as follows:

Q − index =
∑

i=1...K

distance(i) × N(i)

diameter(i)
(1)

K is the number of clusters in the clustering result,
diameter(i) is the diameter of the ith cluster, distance(i)
is the distance of the ith cluster to the nearest cluster, N(i) is
the included genes of the ith cluster.

We applied the symbol clustering algorithm to discretized
matrices by different discretization methods with the same
parameters as above. Q-index was calculated to compare the
effects of discretization (see Figure 4). Our method (the blue
curve) clearly outperformed others in all cases.
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Fig. 4. Q-index for the symbol clustering results on different discreted
matrices. The blue curve represents our method.

Here the clustering result with K = 5 by our discretization
preprocessing was drawn as heatmap in Figure 5. Six clusters
with the number of genes larger than 10 were shown, five of
them had distinct expression patterns.
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Fig. 5. The heatmap of clustering result by our discretization preprocessing
with K = 5. Clusters with gene number larger than 10 are shown. Five
clusters have obvious and specific expression patterns.

IV. DISCUSSION AND CONCLUSION

Discretization is a useful technology to preprocess the
microarray data. This process could reduce the experimental
errors and increase the robustness and accuracy for further
analysis. Nowadays the next-generation sequencing technique
has higher accuracy and repeatability which overcomes mi-
croarray, but the new data show extreme non-uniform and
infinite range. The discretization methods appropriate to mi-
croarray are in pressing need to deep-sequencing data like
DGE and RNA-seq.

In this paper we propose a novel discretization method for
DGE profiles considering the distribution of data and compare
with other discretization methods. The comparison was carried
out by compare the clustering results on the discretized ma-
trices in two aspects. The first is K-means clustering which is
not a feature-based clustering and do not need discretization.
Our method surpasses all of the other discretization methods
and could even beat the clustering result on raw data in
some cases. This means that our discretization method can
maintain the variation of the raw data in a simplified mode. The
other clustering algorithm is a simple feature-based clustering
method and designed just for discretized matrix. The clustering
result by our method has obvious advantages over the others.
In fact, we can adjust the clustering result by the number of
symbols in discreted matrix (the parameter K). A larger K
means clusters with higher expression consistency and less
number of genes. It turns out to be easy to detect genes with
similar expression patterns based on our discretization method,
especially by the simplest algorithm.

To evaluate the feature-based clustering, we defined a new
validity index. Besides the diameter and inter-cluster distance,
we also consider the number of included genes. It is important
and needed to find correlations among genes during clustering.
The Q-index may be useful to evaluate the clustering results
with partial gene set.

RNA-seq technique has clear advantages over all existing
approaches for mapping and quantifying transcriptomes [20].

Our method aims to discrete RNA-seq data just by fitting
a proper distribution. Actually the DGE data and RNA-seq
data have similar distribution, the exponentially distributed
assumption may be still valid.
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