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Abstract—Phosphorylation is a post-translational modification
process mediated by kinases through the addition of a covalently
bound phosphate group, which plays important roles in a wide
range of cellular progresses, such as signaling cascades and devel-
opment. Over the past years, despite many phosphorylation sites
have been determined with mass spectrometry techniques, it is
not clear which kinase phosphorylates which proteins. Under the
circumstance, we propose a new probabilistic model to identify
the substrates phosphorylated by certain kinases. Furthermore,
we construct three tissue-specific phosphorylation networks based
on protein expression data. Investigating the constructed tissue-
specific networks, we find they are functionally consistent with the
corresponding tissues, implying the effectiveness and biological
significance of our proposed approach.

I. INTRODUCTION
Proteins, the basic functional units in biology, are con-

trolled by various kinds of post-translational modifications
(PTMs) [1], among which phosphorylation is one of the
most common PTMs. Phosphorylation is mediated by kinases
through the addition of a phosphate group and is estimated to
affect one-third proteins in eukaryotic cells. Phosphorylation
plays pivotal roles in a wide range of cellular processes [2],
such as signal transduction and differentiation, and acts as
switches in many biological functions. For example, if some
kinases are inhibited, protein phosphorylation will be switched
off, leading to the abnormal regulation of cell cycle [3].
Furthermore, protein phosphorylation is found to be related
to many diseases, including cancer and diabetes.

In general, different kinases modify distinct protein sub-
strates by recognizing specific phosphorylation sites. The in-
teractions between kinases and their corresponding substrates
could provide insights into the biological processes in which
the phosphorylation is involved. Unfortunately, only few such
interactions are known right now. Over the past decade, tens
of thousands of phosphorylation sites have been identified
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with experimental techniques, e.g. mass spectrometry [4]. For
example, there are about 42574 serine, threonine and tyrosine
phosphorylation sites are reported to be determined for human
according to Phospho.ELM database [5]. Despite the large
amount of phosphorylation sites available, unfortunately, it is
not clear which sites are recognized by which kinases and
which proteins interact with which kinases [6]. Therefore,
some computational approaches have been developed to pre-
dict the interactions between kinases and proteins due to the
labor-intensive and time consuming experiments. For example,
Hjerrild et al. developed a new approach to identify phospho-
rylation sites based on neural network [7], and Obenauer et al.
predicted cell signaling interactions based on sequence motifs
[8]. More recently, Newman et al. successfully constructed
a phosphorylation network consists of 230 kinases and 652
substrates based on protein microarray data [9].

Despite the above efforts to predict the interactions between
kinases and proteins, most of the kinase-specific phosphoryla-
tion are not known. In this work, we present a novel model
to predict kinase-specific phosphorylations based on protein-
protein interaction and protein expression data. In particular,
we assume that a kinase binds to one specific sequence
motif within a protein to modify the activity of the protein,
where the phosphorylation sites are located in the sequence
motifs. Furthermore, we construct three tissue-specific phos-
phorylation networks for human based on the tissue-specific
protein expression data. Investigating the constructed tissue-
specific networks, we find they are functionally consistent
with the corresponding tissues, implying the effectiveness and
biological significance of our proposed approach.

II. METHODS AND MATERIALS
A. Data sources

In this work, all the phosphorylated protein expression data
were measured with mass spectrometry for three tissues within
three human samples, including cerebrum (CB), prefrontal
cortex (PFC) and liver (LV). In total, there are 4250 proteins
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Fig. 1. A. The whole phosphorylation network which contains 711 kinase-substrate interactions in total, where the red nodes represent protein kinases and
gray nodes denote protein substrates, respectively. B. The phosphorylation network of Cerebrum, where green nodes represent kinases. C. The phosphorylation
network of Prefrontal cortex, where blue nodes denote kinases. D. The phosphorylation network of Liver, where yellow nodes represent kinases.

TABLE I. HUMAN PROTEIN INTERACTIONS FROM DIFFERENT
DATABASES.

Database Interactions P4250 P4250 P4250 K234

HPRD 38788 7705 2114

BioGRID 40335 7796 1042

IntNetDB 14837 5616 363

STRING 112780 19596 1836

P4250 P4250 denotes the number of interactions among the 4250 expressed proteins.
P4250 K234 denotes the number of interactions between the 4250 expressed proteins
and the 234 kinases.

that are detected to be expressed, of which 1280 proteins are
found to be phosphorylated.

All the kinases were collected from the Human Protein
Reference Database (HPRD) [10] and the UniProt database
[11]. After mapping to the protein expression data, we kept

only those kinases that can be expressed in at least two
samples. As a result, we obtained 234 kinases. Furthermore, we
scanned all the expressed proteins to see whether they contain
any phosphorylation motifs annotated in HPRD. Finally, 124
motifs were found to be contained in at least one phosphory-
lated protein.

Since human protein-protein interaction data is not com-
plete, we integrated interactions from different databases,
including HPRD [10], BioGRID [12], IntNetDB [13], and
STRING [14]. The detailed information about the interactions
from distinct data sources can be found in TABLE I. The
union of all the interactions was used for further analysis.
In particular, we only considered physical interactions among
proteins that were found to be expressed in our datasets.

B. Prediction of kinase-specific interactions
We assumed that a kinase interacts with its substrates

by binding to certain specific sequence motifs within the
substrates. In other words, the kinase-protein interactions are
accomplished with the kinase-motif interactions. Furthermore,
we assumed that to phosphorylate a protein, one kinase has
to have physical interaction with the protein. With the motif
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TABLE II. TISSUE-SPECIFIC INTERACTIONS.

Tissues Interactions
P-value of significance

CB PFC LV

CB PRKAR2A CSK
MAPK3 MAP2K1
STAT3 PTK2B
STAT3 CSK
NCK2 INSR
JAK1 INSR

0.0350
0.0000
0.0283
0.0000
0.0000
0.0000

0.1092
0.2339
0.2601
0.6667
0.3333
0.3333

0.5715
0.6667
0.2123
0.2123
0.6667
0.3333

PFC PRKAR2A PRKACB
SPTBN1 PRKACA
STAT3 MAPK3

0.3918
0.8823
0.3333

0.0452
0.0470
0.0000

0.9048
0.6309
0.8790

LV SDPR PRKCA
YWHAQ FRAP1
ARHGEF12 ROCK2
NUMB PRKCA

0.4668
0.2731
0.6667
0.1999

0.2601
0.5922
0.4544
0.4065

0.0000
0.0298
0.0000
0.0000

All proteins in the table are expressed in the three tissues, and the interactions with P-
value below 0.05 in one tissue while above 0.1 in the other two tissues will be considered
as tissue-specific interactions, where the P-value was calculated as the significance of
Pearson’s correlation coefficients.

composition of proteins, protein expression profiles and protein
interactome, the possibility of a motif Mi interacting with a
kinase Kj can be described as follows.

Prob(Mi,Kj) =

∑
Pn∈P,Mi∈Pn

Sjn · Ijn∑
Pm∈N,Mi∈Pm

Sjm · Ijm
(1)

where Prob(Mi,Kj) is the probability that motif Mi

interacts with kinase Kj , P denotes the phosphorylated protein
set containing motif Mi while N represents all the proteins
containing motif Mi, Sjn denotes the correlation coefficient
between the kinase Kj and protein Pn calculated based on
their expression profiles, and Ijn is an indicator function
defines as follows.

Ijn =

{
1, if protein j and n interact
0, otherwise

(2)

After obtaining the probability of kinase-motif interactions,
we can predict the probability that a kinase interacts with a
protein as follows.

Prob(Pn,Kj) = 1 −
∏

Mi∈Pn

(1 − Ijn · Prob(Mi,Kj)) (3)

where Prob(Pn,Kj) represents the probability that pro-
tein Pn containing motif Mi interacts with kinase Kj , and
Prob(Mi,Kj) is the probability of motif Mi interacting with
kinase Kj . We can set a threshold to determine whether a
kinase interacts with a protein, where those kinase-protein
pairs with probabilities above the threshold were treated as
interacting pairs.

III. RESULTS AND DISCUSSION
A. Prediction of kinase-specific interactions

With the assumption that kinases phosphorylate their sub-
strate proteins through the interactions between kinases and
certain motifs within proteins, we obtained the probabilities
of 102 motifs interacting with 137 kinases with the model
described in Eq (1). With these kinase-motif interactions, we

calculated the probabilities of kinases interacting with proteins
based on Eq (3). With a threshold of 0.6, we obtained 711
kinase-substrate interactions between 126 kinases and 221
proteins. We further constructed a phosphorylation network
based on the interactions as shown in Fig.1 A, where one edge
was laid if there exists an interaction between a kinase and a
protein. The network was visualized with the Cytoscape soft-
ware [15]. The phosphorylation network constructed here can
provide insights into the biological processes in which phos-
phorylation is involved, such as signal processing, development
and disease. In addition, the kinase-motif interactions identified
can help one understand the phosphorylation processes.

The above phosphorylation network was constructed based
on all the protein expression data, and serve as background
network for future analysis. Considering the protein expression
and phosphorylation data in three tissues, we constructed
three phosphorylation networks respectively for the three tis-
sues based on their corresponding protein expression data.
Finally, we obtained 350 interactions between 124 proteins
and 76 kinases for the cerebrum, 321 interactions between
115 proteins and 73 kinases for the prefrontal cortex, and 94
interactions between 61 proteins and 29 kinases for the liver.
The detailed networks of the three tissues are shown in Fig.1
B-D, from which we can see the phosphorylation networks
of the three tissues are different, implying the specificity of
different tissues.

Furthermore, we investigated the three phosphorylation
networks to see whether there are tissue-specific interactions.
We assumed that the correlation coefficient between a kinase
and its substrate will be high if this interaction indeed exists in
a certain tissue, and the correlation coefficients were therefore
regarded as the interaction strength for the interacting protein
pair. In particular, we regarded those kinase-protein pairs as
tissue-specific interactions if their correlation coefficients are
significantly higher in one tissue than in the other two tissues.
Specially, those interactions with p-value below 0.05 in one
tissue but above 0.1 in the other two tissues were treated
as tissue-specific interactions. Table II summarizes the tissue-
specific interactions we identified for the three tissues, where
only the interactions that appear in all three tissues were
shown.

To further evaluate the tissue specificity of the three phos-
phorylation networks, we utilized Network Ontology Analysis
(NOA) [16] to perform functional enrichment analysis of
the three networks. As shown in Table III, those functions
enriched in the networks are functionally consistent with the
functions of the three tissues, indicating the tissue-specificity
characterized by the networks. For example, the phosphory-
lation network constructed for liver is enriched in metabolic
processes and response to toxin. The enrichment of cerebrum
tissue-specific network is related to the developmental process,
negative regulation of cell communication and receptor signal-
ing protein tyrosine kinase activity while the prefrontal cortex
is associated with aging and protein serine/threonine kinase
activity. Surprisingly, the subnetworks and functional enrich-
ment of CB and PFC is more similar which can be explain
by that similar tissue will be associated with similar functions.
It can strongly indicates the reliability of the tissue specificity
subnetworks and may further prompt that the functional data
can be used to identify substrates with similar functions.
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TABLE III. THE ENRICHMENT OF THE BIOLOGICAL FUNCTION IN THREE TISSUE-SPECIFIC PHOSPHORYLATION NETWORKS.

Tissues GO Terms p-value Definition

CB GO:0032502 0.0000 developmental process

CB GO:0050896 0.0000 response to stimulus

CB GO:0010648 0.0000 negative regulation of cell communication

CB GO:0035467 0.0000 negative regulation of signaling pathway

CB GO:0042221 0.0000 response to chemical stimulus

CB GO:0004871 0.0000 signal transducer activity

CB GO:0060089 0.0000 molecular transducer activity

CB GO:0004716 0.0091 receptor signaling protein tyrosine kinase activity

CB GO:0004715 0.0157 non-membrane spanning protein tyrosine kinase activity

PFC GO:0010648 0.0000 negative regulation of cell communication

PFC GO:0035467 0.0000 negative regulation of signaling pathway

PFC GO:0048583 0.0000 regulation of response to stimulus

PFC GO:0007568 0.0000 aging

PFC GO:0010646 0.0001 regulation of cell communication

PFC GO:0048519 0.0002 negative regulation of biological process

PFC GO:0009892 0.0002 negative regulation of metabolic process

PFC GO:0004674 0.0380 protein serine/threonine kinase activity

LV GO:0051171 0.0058 regulation of nitrogen compound metabolic process

LV GO:0005057 0.0074 receptor signaling protein activity

LV GO:0019219 0.0076 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

LV GO:0048545 0.0116 response to steroid hormone stimulus

LV GO:0031323 0.0123 regulation of cellular metabolic process

LV GO:0060255 0.0132 regulation of macromolecule metabolic process

LV GO:0032502 0.0225 developmental process

LV GO:0009636 0.0334 response to toxin

LV GO:0050790 0.0334 regulation of catalytic activity

LV GO:0019899 0.0366 enzyme binding

IV. CONCLUDING REMARKS
Phosphorylation is a reversible post-translational modifi-

cation process that plays key roles in many biological pro-
cess. Identification of protein substrates phosphorylated by
kinases is the key to understanding the phosphorylation. In
this work, a novel approach was presented to predict the
proteins phosphorylated by kinases with the assumption that
kinase-protein interactions are accomplished by kinase-motif
interactions. We constructed three tissue-specific phosphoryla-
tion networks based on protein expression data and protein-
protein interactions, where functional enrichment analysis of
the networks indicate the three tissue-specific phosphorylation
networks are functionally consistent with the corresponding
tissues. The phosphorylation networks constructed here can
provide insights into phosphorylation and other important
biological processes.
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