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Abstract—Identifying regulatory genes partaking in disease 
development is important to medical advances. Since gene 
expression data of multiple experiments exist, combining results 
from multiple gene regulatory network discoveries offers higher 
sensitivity and specificity. However, data for multiple 
experiments on the same problem may not possess the same set of 
genes, and hence many existing combining methods are not 
applicable. In this paper, we approach this problem using a 
number of meta-analysis methods and compare their 
performances. Simulation results show that vote counting is 
outperformed by methods belonging to the Fisher’s chi-square 
(FCS) family, of which FCS test is the best. Applying FCS test to 
the real human HeLa cell-cycle dataset, degree distributions of 
the combined network is obtained and compared with previous 
works. Consulting the BioGRID database reveals the biological 
relevance of gene regulatory networks discovered using the 
proposed method. 

Keywords—gene regulatory network; meta-analysis; multiple 
experiments; pairwise Granger causality; Fisher’s chi-square test 

I.  INTRODUCTION 

Gene regulatory network (GRN) discovery detected gene-
gene interactions from gene expression data [1]–[11]. Genes 
identified to play roles in disease development are potential 
targets of future drugs [2]–[4]. Since DNA microarray 
technology has been extensively applied to various medical 
problems, data of multiple experiments (datasets) concerning 
the same problem often exist. Combining results from multiple 
experiments offers higher statistical power and the discovered 
network is more reliable, but it is not a trivial task [1]. 
Particularly, data for multiple experiments may not contain the 
same set of genes. For example, in the widely studied human 
HeLa cell-cycle dataset [12], out of a total of 1134 periodic 
genes, the number of genes contained in experiments 1–3 are 
only 828, 828 and 1099, respectively [11]. (Although 
experiments 1 and 2 both have “828” genes, they correspond to 
slightly different gene subsets.) Therefore, many combining 
methods (e.g. [1], [8]) assuming the same gene set are not 
applicable. Meta-analysis (MA) provides a direct solution to 
the problem of how these experiments may be combined. 

Previously, MA on gene expression data focused on 
detection of differentially expressed genes, e.g. see [13], [14]; 
while applications to GRN discovery are relatively fewer. 

Nevertheless, recent studies [15]–[17] demonstrate that MA is 
a powerful tool for combining multiple results for GRN 
discovery. However, to our knowledge, we have not seen a 
paper comparing MA methods in the usual situation that 
multiple experiments do not have the same set of genes. In this 
paper, we apply several most commonly adopted MA methods 
to this problem and compare their performance. First, the 
selected MA methods are evaluated by synthetic data. Then, 
the best performing MA method is applied to the HeLa dataset. 

II. PAIRWISE GRANGER CAUSALITY 

Granger causality (GC) [18] has a number of merits over 
other time-series analysis methods [19], and hence is adopted 
here for GRN discovery. Consider two time series X and Y, if Y 
can help predict the future of X, then Y “Granger-causes” X. 
Suppose  the time series of these two variables have data length 
T, denoting their values at time t by Xt and Yt (t=1,2,…,T), 
respectively, they can be modelled by a bivariate 
autoregressive (AR) model: 
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where p is the model order, aij,l (i,j=1,2) are coefficients of the 
model, and  t and t represent residuals. The coefficients can 
be estimated by ordinary least squares, and the GCs between X 
and Y can be detected by F tests [10], [11]. 

For a system with n variables, the above modelling can be 
applied to each pair of variables, which is referred to as 
pairwise GC (PGC). An n-variable network has a total of 

)1(  nnM  possible directed edges, and each edge will be 
assigned a p-value by PGC. However, not all p-values are valid, 
since some bivariate models may not fit to data well and they 
may give rise to false discoveries easily. These badly fitted 
models are excluded by model validation, hence performance 
of PGC can be increased [10]. The valid p-values then undergo 
Benjamini-Hochberg false discovery rate (FDR) controlling 
procedure [20], where we need to provide a FDR level q to be 
controlled, and the procedure will return a threshold on p-value. 
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Those edges with p-values  the threshold are taken as detected 
GCs that constitute the discovered network. Further details can 
be found in [10] and [11]. 

III. META-ANALYSIS METHODS 

In GRN discovery, a gene is referred to as a variable, so 
“gene” and “variable” may be used interchangeably in 
literature. We formulate the problem as follows. Suppose we 
have data of k experiments on a total of n genes. Each 
experiment Ei (i=1,2,…,k) contains ni genes, which is a subset 
of the n genes. After applying PGC, each experiment gives a 
discovered network Gi of ni genes, where every edge in Gi is 
associated with a p-value. We want to combine these k 
networks into one network GMA of n genes. In the following, 
we consider methods belonging to two families of commonly 
adopted MA methods [14]–[17]: vote counting and Fisher’s 
chi-square methods.  

A. Vote Counting 

GMA has )1(  nnM  possible edges. In vote counting 
(VC), for each of these possible edges, we count the number of 
times (votes) this edge is included in some Gi. Those edges 
with votes  a certain threshold constitute GMA. If we only 
require the number of votes  1, then GMA includes all edges in 
Gi. We refer to this network as VC1. Similarly, the GMA 
composed of edges with votes  2 is referred to as VC2, etc.  

B. Fisher’s Chi-Square Methods 

According to [21], given p-values pi (i=1,2,…,) from  
independent studies, the Fisher’s chi-square (FCS) test statistic 
can be computed as:  
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Regarding our GRN discovery problem, if an edge (say, from 
gene Y to gene X) has  p-values from Gi (  k), its 2

F  can be 
computed by (2). Under the null hypothesis that gene Y does 
not Granger-cause X, this 2

F  has a chi-square distribution with 

2 degrees of freedom. Hence, a new p-value pF for combining 
 studies can be obtained. After computing pF for all potential 
edges, again we apply Benjamini-Hochberg FDR control (often 
at another FDR level qF) to fix a p-value threshold and edges 
with pF below the threshold will constitute GMA. We term this 
method as FCS test (FCST). 

Alternatively, 2
F  can also be used to rank the potential 

edges, e.g. as in [15]. We term this approach as FCS Ranking 
(FCSR). To compare with FCST, suppose the GMA obtained by 
FCST consists of HF edges, we also take HF edges with largest 

2
F  to be another GMA, which is referred to as FCSR1. To 

compare with VC2, we take the same number of edges as VC2 
from the FCSR to be a GMA – denoted as FCSR2.  

Since the FCSR approach does not have a natural threshold, 
we derive one as follows. Suppose Gi has Hi edges (remark: Hi 

comes from Benjamini-Hochberg FDR control at level q), we 
scale up Hi by the ratio of all possible edges (the search space 
in GRN discovery) between Gi and GMA: 
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H   is then rounded to nearest integer, which is the number of 
edges to be taken. The resulted GMA is denoted as FCSR3.  

It should be remarked that FCS methods are not restricted 
to PGC. They can also be applied to other GRN discovery 
methods, as long as every discovered edge has a p-value. VC 
does not even require a p-value.  

IV. SIMULATIONS 

A. Synthetic Data 

To generate synthetic data, we adopt an 8-variable AR 
model (i.e. n=8), which is composed of two smaller models of 
5 and 3 variables [22], [23]: 


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 (4) 

The corresponding regulatory network is shown in Fig. 1. wj 
and initial values of xj (j=1,2,…,8) are independent Gaussian 
noises of zero mean and unit variance. This 8-variable model 
has order p=3. Starting with some initial values, we iterate (4) 
to get long time series of length 3140 . For each of the 140-
long segments, the first 100 time points (transient) are dropped 
and the subsequent 40 time points are taken as experimental 
data (i.e. T=40). Hence, data of 3 experiments are obtained 
(k=3).  

To simulate the situation that multiple experiments may not 
contain the same set of genes, we purposely exclude data of a  
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Fig. 1. Regulatory network of model (4). 
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few variables in each experiment, where 0–3 variables may be 
excluded randomly. Since the average exclusion is 1.5 
variables, on average each experiment contains ni=6.5 variables. 
We also require that the union of variables in these 3 
experiments should be 8, i.e. the 3 experiments together should 
contain all the 8 variables in (4). 

B. Performance Measures 

Here we describe some performance measures for a 
discovered network if ground truth is known. Suppose a 
discovered network has H edges, e of them are true positives 
(TPs), then precision HeP / . Denote the number of edges of 
the ground truth network by L, then recall LeR / . The mean 
compromising P and R is )/(21 RPPRF  . P, R and F1 all 
range from 0 to 1, and they are different if LH  . In extreme 
cases, a 1-edge discovered network can have 1P  (if this edge 
is a TP) but a low R; a discovered network consists of all M 
possible edges can have 1R  but a low P. But 11 F  requires 
the discovered network matches the ground truth exactly. Thus 
in the following, we focus more on F1. 

C. Results and Discussion 

Using the synthetic data as generated above, we apply PGC 
with model validation to each experiment Ei separately to 
obtain discovered network Gi (i=1,2,3). We assume ground 
truth is unknown, so the model order of each PGC application 
is estimated by Akaike information criterion (AIC) [11], [24]. 
For the Benjamini-Hochberg FDR control, q is fixed at 0.05.  

When the 3 Gi’s are ready, MA methods are applied to 
them. Each MA method gives a GMA, and its performance 
measures can be calculated by comparing with the ground truth 
network in Fig. 1. Since combining 3 experiments offers a 
much higher statistical power, the new p-values pF in FCST are 
much smaller than those in Gi. Hence, qF=0.001 is used for 
Benjamini-Hochberg FDR control in FCST.  

The above exercise is repeated 30 times with different 
initial values for xj. Results of these 30 runs are shown in Table 
I. Besides the MA methods, we also show the results of Gi in 
the first row – labelled by “1-Expt”, because each Gi only 
comes from a single experiment. It turns out that  6.6 (1.1) 

variables are included in each experiment. The model order 
estimated by AIC  3.3 (1.1). The average number of edges in 
Gi is 5.0, and Gi’s have average F1 of 0.50.  

From Table I(a), MA methods generally give higher F1 than 
1-Expt. VC1 contains too many edges (H=10.6 is substantially 
larger than L=7), so R is high, but P is even lower than 1-Expt 
case. VC2 has high P. But it is already a bit too strict that H is 
substantially smaller than L, so results in low R, making that F1 
is lower than VC1’s. VC3 is really strict that very few edges 
can pass this criterion – in average H=0.7 only. However, it is 
amazing that all edges passing this criterion are correct (P=1)! 
Yet, since H is too small, VC3 is not useful in practice.  

FCST and FCSR1 give the same and the highest (best) 
F1=0.69 in these 30 runs. Discovered edges by FCST generally 
have p-values < 0.0006. FCSR2 should be compared with VC2: 
though H are the same, FCSR2 gives higher measures for {TP, 
P, R, F1}, meaning that the ranking ordered by 2

F  (through p-
values from single experiment) is better than simple vote 
counting. FCSR3 turns out also to give high F1. 

Although FCST and FCSR1 give exactly the same results 
in the 30 runs, they are conceptually different. The same results 
here can be understood as follows. H of VC1, VC2 and FCST 
are 10.6, 3.7 and 6.2, respectively. That means the thresholding 
of FCST usually lies in VC=1 region, i.e. =1. With the same , 
the two criteria FCST and FCSR1 are the same. Nevertheless, 
we have repeated similar exercise as above 100 times with 
larger number of experiments k=10, then F1 of FCST is a bit 
higher than FCSR1’s, where the difference is 0.006. Their 
discovered networks differ in 9 out of 100 runs, where FCST is 
better in 7 runs and worse in 2 runs. It means that FCST and 
FCSR1 give the same discovered network most of the time. 
However, there are still some situations that they give different 
discovered networks, and FCST often works better in such 
cases. This reveals that the degrees of freedom in the chi-
square test also count. Since 2

F  is only a test statistic, and 
FCST rigorously returns a p-value, FCST is preferred 
conceptually. Moreover, there is lack of guidance for setting a 
threshold for FCSR. Therefore, among the MA methods listed 
in Table I, we conclude that FCST is the best. FCST will be 
applied to real data in next section.  

TABLE I.  SIMULATION RESULTS OF SINGLE EXPERIMENT AND META-ANALYSIS METHODS 

 
 

(a) Mean 

 H TP P R F1 

1-Expt 5.0 3.3 0.65 0.46 0.50 

VC1 10.6 5.4 0.55 0.78 0.63 

VC2 3.7 3.3 0.84 0.47 0.58 

VC3 0.7 1.8 1.00 0.25 0.39 

FCST 6.2 4.6 0.79 0.65 0.69 

FCSR1 6.2 4.6 0.79 0.65 0.69 

FCSR2 3.7 3.5 0.89 0.50 0.61 

FCSR3 7.3 4.8 0.69 0.69 0.67 

(b) Standard Deviation 

 H TP P R F1 

1-Expt 3.1 1.7 0.27 0.24 0.20 

VC1 3.4 1.0 0.16 0.14 0.11 

VC2 2.1 1.4 0.18 0.19 0.17 

VC3 1.0 0.8 0.00 0.11 0.14 

FCST 2.2 1.0 0.17 0.15 0.11 

FCSR1 2.2 1.0 0.17 0.15 0.11 

FCSR2 2.1 1.3 0.15 0.19 0.15 

FCSR3 2.3 1.0 0.15 0.14 0.10 
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We have also repeated the simulation of 3 experiments 
using different data lengths T = 20, 30 and 40 in E1, E2 and E3, 
respectively. This exercise leads to the same conclusion as 
before: FCST remains the best. 

V. META-ANALYSIS ON REAL HELA DATA 

The human HeLa dataset [12] contains time-series gene 
expression data from cell division cycle experiments using 
cDNA microarrays. Most GRN discovery studies on this 
dataset (e.g. [5]–[7]) concentrated on analyzing the 1134 
periodic genes using data of experiments 1–3. In a previous 
work [11], for the sake of comparison, we have applied PGC 
with model validation also to the 1134 periodic genes in 
experiments 1–3. Discovered networks (Gi) consisting 
thousand of edges are obtained. A brief summary is given in 
Table II. E3 yields substantially more edges than E1 and E2 
because E3 contains more genes and longer series which offer 
higher statistical power for GC detection. 

Now, we apply FCST to the 3 Gi’s. Since p-values from 
PGC are generally larger in HeLa real data (one order of 
magnitude higher than those in synthetic data), we relax qF to 
0.01 such that the number of discovered edges in GMA is more 
reasonable and not too small. The resulted GMA contains a total 
of 29146 edges, with p-values (pF) ranging from 0.0066 to 
6.010−11, and their geometric mean is 9.310−4. It turns out 
that these 29146 edges include all edges with VC2. E1, E2 and 
E3 contribute 2301, 3878 and 24001 edges, respectively, and 
they have some overlaps. 

TABLE II.  SUMMARY OF ADOPTED HELA DATA AND DISCOVERED 
NETWORKS FROM PGC 

 ni T 
a Hi 

E1 828 11 3691 

E2 828 26 7685 

E3 1099 47 33601 

a. Effective data length [11] 

 
Since the ground truth network is unknown for this real 

dataset and hence previous measures {TP, P, R, F1} cannot be 
computed, we compute degree distributions instead [25], which 
also provides insight to the structure of large networks [11], 
[26]. The discovered network GMA involves 1101 genes, where 
1088 have in-degree  0 and 1007 have out-degree  0. The 
(in-/out-) degree distributions of the 1101 genes are plotted in 
Fig. 2, which shows similar power-law decay as in [5] and [7]. 
Denoting degree by d, the degree distribution in Fig. 2(c) has a 
decay approximately as 2d . The degree exponent 2 is 
consistent with our previous work [11], but it is smaller than 
2.7 in [5] which used E1 only.  

Table III shows the top 10 genes with maximum (in-/out-) 
degrees. Network hubs (genes with high degrees) shown in 
Table III(c) generally have higher out-degrees than in-degrees, 
meaning that they act as sources rather than recipients in 
interactions. This agrees with our previous works [10], [11]. 
Genes 3.UBE2C, 5.CDC2, 10.FLJ10468, 16.TOP2A, 
23.KNSL5, 26.CDC2, 42.DJ616B8.3, 87.USF1 were also 
found to have high degrees in [6]. 

 

 

Fig. 2. Degree distributions of the 1101 genes involved in discovered network by FCST for HeLa dataset. Excess kurtosis = kurtosis – 3. So, skewness and 
excess kurtosis are both zero for Gaussian distribution. 

(a) In-degree: skewness = 1.6, excess kurtosis = 2.8 

(c) Degree: skewness = 3.1, excess kurtosis = 10.6 

(b) Out-degree: skewness = 3.9, excess kurtosis = 16.0 
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TABLE III.  TOP 10 GENES WITH MAXIMUM (IN-/OUT-) DEGREES 

 
 
From Table III(c), 5.CDC2 is the network hub with highest 

degree. 484 genes are connected to it in our discovered 
network GMA. CDC2 is known as cyclin-dependent kinase 1, 
with official symbol CDK1. According to the Entrez Gene 
record on CDC2 [28], “the protein encoded by this gene is a 
member of the Ser/Thr protein kinase family”. This protein is 
“essential for G1/S and G2/M phase transitions of eukaryotic 
cell cycle”. In our discovered network, many interactions with 
CDC2 are documented in the BioGRID database [29]. For 
example, using low-throughput experiment, Qi et al. [30] 
found that BUB1 activity was enhanced by CDK1-mediated 
phosphorylation. This is consistent with the discovered edge 
“5.CDC2  15.BUB1”. The interaction “5.CDC2  
17.CKS2” is confirmed by 2 papers [31], [32], where [32] 
mentioned that mammalian CKS2 bound CDK1 and 
participated in cell-cycle control. Kong et al. [33] found that 
“Cyclin F (CCNF) regulates the nuclear localization of cyclin 
B1 (CCNB1) through a cyclin-cyclin interaction”, which 
involved “a complex composed of CDC2 and a B-type cyclin”. 
This agrees well with our discovered edges involving these 3 
genes, as drawn in Fig. 3.  
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55

1111
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CCNF CCNB1  
Fig. 3. Discovered edges involving genes 5.CDC2, 11.CCNF and 50.CCNB1. 

VI. CONCLUSION AND DISCUSSION 

We have applied MA methods to combine GRN 
discoveries (by PGC) from data of multiple experiments that 
may not have the same set of genes. Simulation results show 
that vote counting is outperformed by FCS methods, among 
which FCST is the best. Applying FCST to the HeLa dataset, 
degree distributions of the combined network is obtained and 
compared with previous works. The gene CDC2, which plays 
important roles in cell-cycle regulation, is found to be the 
network hub with highest degree. Many of our discovered 
edges are documented in the BioGRID database. It should be 
remarked that FCST can also be applied to networks obtained 

by GRN discovery methods besides PGC, as long as p-values 
of all discovered edges are available. 

A potential improvement to the above scheme is to consider 
network inference under a single model which optimizes the 
network structure by consulting data of all multiple 
experiments simultaneously, such as the two methods in [1] 
and [8]. However, these methods need to be modified for the 
present situation that multiple experiments do not possess the 
same set of genes. This is a non-trivial task and demands 
further efforts. 
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