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Abstract— Decoding protein-DNA interactions is important to 

understanding gene regulation and has been investigated by 

worldwide scientists for a long time. However, many aspects of 

the interactions still need to be uncovered. The crystal structures 

of protein-DNA complexes reveal detailed atomic interactions 

between the proteins and DNA and are an excellent resource for 

investigating the interactions. In this study, we profiled the 

spatial distribution of protein atoms around six structural 

components of the DNA, which are the four bases, the 

deoxyribose sugar and the phosphate group. The resultant 

profiles not only revealed the preferred atomic interactions 

across the protein-DNA interface but also captured the spatial 

orientation of the interactions. The profiles are a useful tool for 

investigating protein-DNA interactions. We tested the strength of 

profiles in two experiments, discrimination of native protein-

DNA complexes from decoys with mutant DNA and 

discrimination of native protein-DNA complexes from near-

native docking decoys. The profiles achieved an average Z-score 

of 7.41 and 3.22 respective on benchmark datasets for the tests, 

both are better than other knowledge-based energy functions that 

model protein-DNA interaction based on atom pairs. 

Keywords— protein-DNA interaction; spatial specific scoring 

matrix; fragment-based method  

I. INTRODUCTION 

Knowledge about protein-DNA interactions is crucial for 
understanding important cell processes like gene regulation. 
Enormous efforts have been made to investigate various 
problems pertaining to protein-DNA interactions. Some 
interesting problems are finding DNA-binding proteins that 
will bind to DNA, detecting DNA-binding sites on proteins, 
and determining the binding mode between a given pair of 
protein and DNA.  

Many computational methods have been developed for 
predicting DNA-binding sites on protein structures. Some 
methods focus on the geometrical and physiochemical 
properties of DNA-binding sites and use data-mining or 
statistical approach to predict potential DNA-binding sites on 
new protein structures [1-7]. These methods usually represent 
patches on the protein surface using vectors or graphs, and then 
compare them with known DNA-binding sites. These methods 

usually suffer relatively low accuracy, and some of them are 
very computational demanding. Other methods rely on 
structural alignment [8, 9]. These methods maintain a database 
of protein structures whose DNA-binding sites are known. To 
predict DNA-binding sites on a new protein (A.K.A. query), 
the new protein is used to query the database to find structures 
(A.K.A. templates) that share a high similarity with it. The 
query protein structure is then aligned with the templates. The 
region on the query protein that superimpose with the known 
DNA-binding sites on the templates will be predicted to be a 
DNA-binding site. The success of these methods strongly 
depends on the availability of templates and the level of 
similarity between the query and templates. 

Other researchers using docking approach to predict the 
structure of the protein-DNA complex. The resultant complex 
structure not only reveals the DNA-binding sites on the protein 
structure but also shows the detailed atomic interaction 
between the protein and the DNA. A docking method searches 
the conformation space of the complex and uses an energy 
function to score the conformations. Different docking methods 
differ in the energy function used. Some use functions that 
model various physical and chemical forces between atoms 
[10-14]. Others use knowledge-based statistical energy 
functions derived from observed interacting atom pairs across 
the interface [15, 16]. 

Herein, we present a knowledge-based energy function for 
the study of protein-DNA interaction. We analyzed the 
distribution of protein atoms around each structural component 
of the DNA and developed spatial specific scoring matrices 
(SSSMs) based on the observed distribution. We showed that 
the SSSMs could be used as a knowledge-based energy 
function to discriminate native protein-DNA structures and 
various decoys. 

II. METHODS AND MATERIALS 

A. Datasets 

The testing dataset for the first test, DNA mutation decoy 
test, was composed of 51 non-redundant complexes from [17]. 
For the second test, the near-native docking decoys were 
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generated using FTDock [18] from 45 protein-DNA complexes 
collected by Robertson and Varani [16]. The training datasets 
for both tests were derived from the 212 protein-DNA 

complexes used in Xu et al. [13]，which were extracted from 

the PDB database and culled by the PISCES server [19] such 
that pairwise similarity is less than 35%. In both tests, we 
removed from the training set complexes that have higher than 
35% similarity with any protein in the test sets. As a result, the 
training set for the DNA mutation decoy test contained 166 
protein-DNA complexes and the training set for the near native 
docking decoy discrimination test contained 167 protein-DNA 
complexes. 

B. Spatial specific scoring matrices (SSSMs) 

We first divided DNA into six repeating structural 
components, which were the four bases, the deoxyribose sugar 
and the phosphate group. We collected the protein atoms that 
contacted with these components and investigated how they 
distributed around the components in the space. For each 
component, we defined a new coordinate system that centered 
at it. Using the new coordinate system as grid, we divided the 
space into 16*16*16 cubes, with 16 bins on each axis. The size 
of the cubes was customized so that all the protein atoms 
contacting with the component fell into one of the cubes. We 
classified the atoms of protein into 14 types as described in [20] 
and then counted the number of different types of atoms falling 
in each cube. Therefore, the distribution of protein atoms 
around a component was described using a 16*16*16*14 
matrix. The counts in the matrix were normalized by the total 
count. Therefore, each cell in the matrix corresponded to one 
atom type and one cube in the space, and the value in the cell 
showed how likely the atom would contact the DNA 
component from a location corresponding to the cube. These 
matrices were populated using protein-DNA complexes in the 
training set. The resultant six matrices (will be referred as 
SSSMs) were used as scoring matrices to discriminate native 
protein-DNA complexes from various decoys. For a given 
structure (native or decoy) of protein-DNA complex, a score 
was assigned to it using the following method. 

  

where Oijk is the number of atoms of type k that contact 
component i from the location corresponding to cube j, and Pijk 
is the value in the cell of the scoring matrix for component i 
that corresponds to atom type k and cube j. Higher scores mean 
that the complex was more likely to be the native structure. 

III. EXPERIMENTS AND RESULTS 

A. Test 1: To discriminate native structures from DNA 

mutation decoys 

For this test, 166 protein-DNA complexes were used as 
training set to derive the six scoring matrices and a disjoint test 
set consisting 51 protein-DNA complexes were used to 
generate decoys. For each of the native complex, we generated 

50,000 decoys by replacing a nucleotide base with a different 
type of base with equal opportunity. The new base was placed 
in the same plane as the native one. Then we calculated the 
scores for the native complex and the decoys. Since the native 
complex only differed from the decoys in the bases, only the 
four SSSMs corresponding to bases were used in this test to 
calculate the scores. We used Z-score to evaluate the 
performance of discriminating native complex and decoys. 
Here Z-score=(Savg-Snative)/SD, where Savg and SD are the 
average and standard deviation of scores of 50,000 decoys, and 
Snative is the score of the native structure. Since the native 
structure is expected to have higher score than the decoys, a 
lower negative Z-score means that the scoring system is able to 
distinguish the native structure from decoys with better 
performance. Our method achieved an average Z-score -7.41 
on the test set. The Z-scores for each complex were shown in 
Table 1.  

Many researchers have tried to develop knowledge-based 
energy functions for protein-DNA interactions based on 
observed atomic contacts across the interface. Zhou and Zhou 
[12] first applied a distance-scaled, finite ideal-gas (DFIRE) 
energy function for protein-DNA interaction. Gromiha et al.  
[21] also developed energy functions based on intermolecular 
and intramolecular contacts. Xu et al. [13] developed five 
variants of DFIRE energy functions, among which the variant 
(named vcFIRE) with low-count correction and volume 
correction achieved the best result. Xu et al. [13] evaluated and 
compared these methods using the same training and test 
datasets that were used in this study. Herein, we used the 
results from their study and compared our method with others. 
Table 1 showed that our method achieved better z-scores than 
all other methods in all but two complexes. The only 
exceptions are 1cjg, and 1xbr (shaded gray in Table 1). In 1xbr, 
our z-score was very close to the best. Paired t-test showed that 
our method outperformed all others with p<0.0001. The 
average Z-score for our method on the dataset is -7.41, which 
was much better than that of any other methods. 

TABLE I.  Z-SCORES FOR DIFFERENT METHODS IN THE TEST OF 

DISCRIMINATING NATIVE STRUCTURES FROM MUTATION DECOYS. 

PDB ID 

Gromiha 

et al. 

(2004) 

Zhou and 

Zhou 

(2002) 

Xu et al. 

(2009) 

Our 

Method  

1a02 -1.8 -2.27 -3.29 -18.27 

1a74 0.7 1.50 -4.17 -5.50 

1b3t -2.1 -1.15 -2.38 -2.44 

1bhm -1.3 -0.05 -3.26 -6.20 

1bl0 -2.5 -2.23 -3.25 -8.56 

1cdw -0.6 1.64 -0.02 -5.45 

1cjg -1.4 -2.58 -0.81 -0.10 

1cma -1.6 1.02 -1.59 -2.69 

1e66 -1.7 -3.22 -3.12 -4.01 

1dp7 -0.7 0.76 -3 -3.02 

1ecr -1.1 0.53 -1.58 -5.01 

1fjl -1 2.59 -2.63 -11.53 
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1gat -1.7 1.73 -1.27 -2.12 

1gdt -1.7 -0.04 -3.75 -10.70 

1glu -1.1 1.72 -1.95 -12.03 

1hcq -2.5 -0.85 -4.09 -10.11 

1hcr 0.4 -0.25 -2.43 -3.70 

1hdd -1.8 0.95 -1.57 -6.48 

1hlo -1.6 0.29 -3.95 -5.83 

1hry -0.9 0.23 -1.33 -3.76 

1if1 -1.7 -1.62 -1.96 -8.64 

1ign -2.2 -0.23 -5.32 -8.32 

1ihf -2.3 1.79 -1.81 -2.35 

1j59 -0.8 -2.33 -3.79 -12.29 

1lmb -4.3 -1.48 -4.25 -7.04 

1mdy -2.5 2.81 -2.83 -14.06 

1mey -2.2 -1.52 -4.92 -9.84 

1mhd -1.9 0.56 -2.74 -7.12 

1mnm -3 0.20 -4.04 -8.24 

1mse -2 -0.69 -2.13 -4.46 

1oct -2.1 -0.37 -2.85 -8.96 

1par -1.7 -0.96 -2.42 -5.34 

1pdn -2.5 -1.06 -1.92 -8.41 

1per -1.1 0.20 -1.92 -8.53 

1pue -2.7 -1.27 -2.21 -11.13 

1rep -3.2 -2.2 -3.01 -12.57 

1rv5 -0.3 0.11 -1.67 -3.99 

1srs -2.4 0.67 -3.62 -8.44 

1svc -2.2 -1.68 -4.27 -9.04 

1tc3 -2.5 -0.24 -2.29 -6.46 

1tf3 -2.3 -1.19 -3.56 -5.45 

1tro -3.1 -0.19 -4.05 -7.41 

1tsr -1.2 -2.38 -2.68 -8.74 

1ubd -2.1 -0.12 -4 -7.26 

1xbr -2.4 -2.76 -2.4 -2.21 

1yrn -2.9 -0.05 -3.78 -9.10 

1ysa -2.1 0.14 -4.01 -8.88 

2bop -1.7 -2.16 -3.12 -4.04 

2drp -2.3 1.40 -4.75 -21.02 

3cro 0.3 -1.52 -0.57 -9.61 

6cro -2.3 -3.86 -3.79 -5.38 

Mean -1.8 -0.43 -2.86 -7.41 

B. Test 2: To discriminate native structure from near-native 

docking decoys 

This experiment was designed to test the ability of SSSMs 
to discriminate native complexes from near-native docking 
decoys. We created 10,000 docking decoys for each of the 45 

native complexes using FTDock. 2,000 lowest-RMSD decoys 
were selected. These were near-native decoys. Six SSSMs were 
derived using 167 the protein-DNA complexes from the 
training set. Then, these SSSMs were used to compute scores 
for the native complex and near-native decoys. 

For this test, we compared our method with the DFIRE-
based methods developed by Zhou and Zhou [12] and Xu et al. 
[13] and an all-atom distance-based method developed by 
Robertson and Varani [16]. These methods were all evaluated 
using the same training and test datasets as used in this study. 
Our method achieved an average Z-score of -3.22, which was 
the best among all methods (Table 2). Our method achieved the 
best Z-score for 29 of the 45 protein-DNA complexes. Paired t-
test confirmed that our method outperformed the others with 
p<0.0001. 

TABLE II.  COMPARISONS OF METHODS IN TERMS OF Z-SCORES FOR THE 

TEST OF DISCRIMINATING NATIVE STRUCTURES FROM NEAR-NATIVE DOCKING 

DECOYS. 

PDBid 

Zhou and 

Zhou (2002) 

Xu et al. 

(2009) 

Robertson 

and Varani, 

(2007) 

Our 

method 

1qna -1.21 -1.79 -1.57 -2.36 

1d02 -1.47 -2.63 -1.95 -4.91 

1eon -1.66 -3.09 -1.98 -3.52 

1ckq -1.02 -1.94 -1.14 -2.77 

1dmu -1.55 -4.16 -2.06 -3.06 

1qpz -2.2 -3.48 -2.55 -3.04 

1au7 -1.52 -2.55 -1.96 -3.86 

1je8 -1.85 -2.91 -2.04 -2.43 

2cgp -0.97 -1.99 -1.42 -2.07 

1b3t -1.38 -2.99 -1.94 -2.27 

1tc3 -1.56 -2.67 -1.56 -3.02 

1g9z -2.63 -5.45 -3.29 -3.89 

1zme -2.13 -2.38 -2.26 -4.01 

1a73 -1.85 -3.41 -2.3 -5.90 

1jko -1.77 -3.12 -2.16 -3.21 

1bdt -1.77 -3.19 -1.88 -3.13 

2bop -1.68 -2.97 -2.13 -2.55 

1a1i -1.44 -2.49 -1.98 -5.09 

1bc8 -1.5 -2.67 -2.1 -3.22 

1pdn -1.45 -2.47 -2.17 -3.13 

1skn -1.23 -2.6 -2.06 -4.98 

1mjo -2.09 -2.55 -2.16 -3.12 

1bl0 -0.96 -1.92 -1.4 -1.70 

2dgc -1.46 -2.36 -2.06 -1.30 

3pvi -1.65 -2.34 -1.86 -2.19 
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2hdd -2.37 -3.13 -2.7 -4.82 

1ign -1.74 -3.44 -2.3 -3.06 

1qpi -2.12 -3.67 -3.07 -3.26 

1a3q -1.46 -2.49 -1.91 -3.02 

1dfm -1.23 -2.6 -1.51 -1.97 

1lq1 -1.94 -3.26 -2.38 -2.73 

1tro -1.43 -2.78 -2.05 -2.86 

1fjl -1.36 -2.12 -1.58 -3.45 

1h8a_a -1.29 -2.35 -2 -1.52 

1h8a_b -1.02 -2.18 -1.59 -4.71 

1f4k -1.16 -2.58 -2.1 -2.74 

6pax -1.21 -2.74 -1.96 -1.28 

1hlv -1.77 -3.17 -2.23 -2.48 

1mnn -1.59 -3.4 -2.49 -5.68 

1dsz -1.12 -2.38 -1.82 -2.79 

1hwt -1.77 -1.96 -2.4 -2.65 

1per -1.44 -2.7 -2.08 -3.62 

1l3l -1.76 -3.1 -2.42 -4.54 

3hts -0.95 -3.03 -2.05 -3.32 

3bam -1.66 -2.86 -1.99 -3.70 

Mean -1.56 -2.8 -2.06 -3.22 

IV. CONCLUSIONS 

We have developed a knowledge-based scoring function for 
assessing protein-DNA interactions. We divided the DNA into 
6 repeating structural components and used spatial specific 
scoring matrices (SSSMs) to capture the distribution of protein 
atoms around these components in the 3D space. The proposed 
method was able to discriminate native protein-DNA 
complexes from various decoys with better performance than 
other knowledge-based energy functions. Compared with other 
energy functions derived from observed atom contacts, the 
proposed SSSMs not only reflect the preferences for atomic 
interactions across the protein-DNA interface but also capture 
the spatial orientation of the interactions. The SSSMs will be a 
useful tool for investigating protein-DNA interactions.  
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