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Abstract—Biochemical systems can be described by biochem-
ical reactions. Biochemical reactions can be investigated through
mathematical modeling and stochastic simulations. Deterministic
and stochastic models are two basic categories of models for
biochemical reactions. Due to transmembrane transportation of
biochemical species and delayed degradation, time delays are
ubiquitous in coupled biochemical systems. Therefore, models
for biochemical reactions can be further classified into de-
layed and un-delayed ones. For biochemical systems without
delays, researchers have established the connections between
deterministic models and stochastic models directly from the
deterministic ones. For delayed biochemical systems, researchers
have proposed some stochastic simulation methods to cope with
biochemical reactions with time delays. However, the existing
delayed stochastic simulation algorithms (SSA) are all incapable
of realizing the comparison between highly nonlinear determin-
istic delayed models and stochastic models directly from the the
deterministic ones. In this paper, we proposed a delayed SSA,
which can realize the comparison between deterministic models
and its stochastic counterparts. Furthermore, one can also use the
algorithm to investigate intrinsic noise-induced behaviors, and the
effect of system volumes. Several numerical examples show the
effectiveness and correctness of our algorithm.

I. INTRODUCTION

Biochemical systems can be theoretically analyzed through
mathematical models [1]-[22]. Generally speaking, there are
two classes of models: stochastic models and deterministic
models. The chemical master equation (CME) is a stochastic
model, and it can exactly describe the biochemical systems.
Deterministic models include ordinary differential equation
(ODE) models, delayed differential equation (DDE) models,
partial differential equation (PDE) models and so on. Deter-
ministic models are simple models, which are obtained based
on some ideal hypotheses. And many factors are ignored in the
deterministic models, such as intrinsic noise in the biochemical
systems and system volume.

Though the CME can exactly reflect the biochemical
systems, it is always too complex for biochemical systems,
especially for systems with several species and very high
molecular numbers. Researchers have proposed some exact
SSAs to numerically simulate the CME. The well-known
algorithm is proposed by Gillespie in the year 1977 [4].
And after then, some accelerated algorithms, such as the τ -
leap method [6], the hybrid method [7] have been proposed.
Time delays are ubiquitous in biochemical systems [8]-[14], to
stochastically simulate biochemical systems with time delays,

researchers have proposed some delayed stochastic simulation
algorithms [8], [9], [10], [11], such as the exact direct method
[10], the rejection method [9], [10]. Since before we give our
main results, we will have to have an overview on related
works as preliminaries in Section II, we will not discuss these
algorithms in detail here.

In the year 2002, Gonze and coauthors [17] investigated
the relationships between deterministic models and stochastic
models for circadian rhythms. Where they established an ODE
model for the circadian rhythm system from detailed biochemi-
cal reactions, and they called the detailed biochemical reactions
as developed stochastic model, and the developed model can
be simulated by the classical Gillespie algorithm. Moreover,
they rewrite the ODE system as birth-death processes, where
the gain terms in the right hand of a differential equation are
treated as birth precesses,and the lose terms are treated as
death processes. These terms are transformed into propensity
functions by scaling with system volume Ω. They call the birth-
death stochastic models as undeveloped stochastic models, and
the undeveloped stochastic model can also be simulated by
the Gillespie algorithm. Gonze and coauthors found that the
undeveloped stochastic model can well reflect the dynamics as
the developed ones,and obviously, the undeveloped stochastic
model is much simpler and more time-saving.

However, when there are time delays in the deterministic
models, can we rewrite the deterministic models into unde-
veloped stochastic models? Since the existing delayed SSAs
proposed in Ref.[8], [9], [10], [11] were only known to be
used to treat developed stochastic models, how can we simulate
the highly nonlinear undeveloped delayed stochastic models?
Motivated by the above mentioned problems, in this paper,
we will propose an undeveloped delayed SSA and discuss the
comparison between highly nonlinear deterministic modes and
its stochastic counterparts.

The left paper is organized as follows: Section II briefly
overviews the Gillespie algorithm and the rejection algorithm
for developed delayed stochastic models. Our algorithm for
the undeveloped delayed stochastic models will be proposed
in Section III. In Section IV, we will give some numerical
examples to illustrate the effectiveness and correctness of our
algorithm. Conclusions and some discussions will be in the
last Section V.
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II. OVERVIEWS AND PRELIMINARIES

Before we introduce the new stochastic simulation algo-
rithm, we have a brief overview on stochastic simulation
algorithms for biochemical reactions, and take them as our
preliminaries.

In the year 1977, Gillespie proposed the direct Gillespie
algorithm [4] to simulate biochemical reactions. Suppose the
fixed volume Ω contains a spatially uniform mixture of N
chemical species, which can interact through M specified
chemical reaction channels. The N chemical species are
denoted by Si, i = 1, 2, ..., N , and Xi denotes molecular
number of Si. The µ′th reaction channel is denoted as Rµ, and
aµ, (µ = 1, 2, ..., M) denotes the propensity of the reaction
channel Rµ. State-change vector νj = (ν1j , ν2j , ..., νNj)

T

denotes the dynamics of the reaction channel Rj , where
νij represents the changes of species Si in the Rj reaction
channel. t denotes the time, and tstop denotes the maximum
time considered of the reaction systems. There are two key
points in the direct Gillespie algorithm, namely, which is the
next reaction and when the next reaction to happen. Based on
the idea of the Monte Carlo simulation, Gillespie has resolved
the two key points and given the following exact simulation
algorithm. Steps for the algorithm are as follows:
The Direct Gillespie Algorithm:
Step 1. Input values for initial state X(0) =
(X1(0), ..., XN (0))T for N species, set time t = 0 and
reaction counter i = 1.
Step 2. When time t < tstop, compute the propensities for
M reaction channels aµ, µ = 1, ..., M and compute the total
propensity a0 = Σµaµ, if a0 = 0, stop, else go to step 3-6.
Step 3. Generate uniform random numbers u1, u2 ∈ [0, 1].
Step 4. Compute the time interval until the next reaction
∆ti = −lnu1/Σµaµ.
Step 5. Find the channel of the next reaction j, namely take
j to be the integer for which Σj−1

v=1av < u2a0 ≤ Σj
v=1av .

Step 6. Update X as X + νj according to the j′th reaction
channel, update time t = t + ∆ti and increase counter
i = i + 1, go to step 2.

The direct Gillespie algorithm is very time-consuming, and
it is almost not feasible even with several species. Therefore,
based on the direct Gillespie algorithm, there have been some
accelerated algorithms. Such as the τ -leap method [5], [6], the
next reaction method, the accurate hybrid stochastic simulation
method proposed in Ref.[7].

To cope with chemical reactions with time delays, Bratsun
and coauthors[8], Barrio and coauthors[9],Cai [10] and Chen et
al. [11] have proposed some stochastic simulation algorithms
to deal with chemical reactions with time delays. Among these
algorithms, the direct exact stochastic simulation algorithm for
chemical reactions with delays [10] was proved to be equiv-
alent to the rejection method proposed by [9]. For simplicity,
we mainly overview the rejection method.

Suppose some of the reaction channels or all the reaction
channels incur a time delay, and we use RD to denote
reaction channels with time delays. A reaction Ri ∈ RD will
finish with a delay of τi after it is initiated. Consequently, the
product of reaction Ri will be available after a delay of τi,
and thus the population of the product will change after a time
delay of τi. The delayed reactions can further be classified

into nonconsuming reactions and consuming reactions, where
for nonconsuming reactions, the reactants of an unfinished
reaction can participate in a new reaction, and when the
nonconsuming reaction occurs, the population of the reactants
does not change. While for consuming ones, the reactants of
an unfinished reaction cannot participate in a new reaction,
and when a consuming reaction occurs, the population of
the reactants changes immediately. Following the notations
in [10], denote the set of nonconsuming reactions as RD1

and the set of consuming reactions as RD2. The rejection
algorithm is described as follows [9], [10]:
The Rejection Algorithm:
Step 1. Input values for initial state X(0) =
(X1(0), ..., XN (0))T for N species, set time t = 0 and
reaction counter COUNT = 1.
Step 2. When time t < tstop, compute propensities for the
M reaction channels aµ(µ = 1, ...,M) and compute the total
propensity a0 = Σµaµ, if a0 = 0, stop, else go to step 3-4.
Step 3. Generate an uniform random number u1 ∈ [0, 1].
Based on u1, generate ∆ti = −lnu1/Σµaµ.
Step 4. If there are delayed reaction(s) to finish in the interval
[t, t + ∆ti), discard ∆ti, update time t by td, where td is
the time when the first delayed reaction finishes, update state
vector X , update COUNT by COUNT + 1 and repeat step
2-4. If there is no delayed reaction in the interval [t, t + ∆ti),
proceed to step 5-7.
Step 5. Generate an uniform random number u2 ∈ [0, 1]. And
find the channel of the next reaction j, namely take j to be
the integer for which Σj−1

v=1av < u2a0 ≤ Σj
v=1av .

Step 6. If Rj /∈ RD, update X according to the j′th reaction
channel, update COUNT by COUNT + 1. If Rj ∈ RD2,
update X by X + ν̃j , where ν̃j = (ν̃1j , ν̃2j , ..., ν̃Nj)

T ,
ν̃ij = νij if νij ≤ 0, and ν̃ij = 0 if νij > 0. update COUNT
by COUNT + 1. If Rj ∈ RD1, marking the reaction as
RD1, change the state vector at t = t + ∆ti + τj .
Step 7. Set t = t + ∆ti, go to step 2.

The above algorithm is effective for developed delayed
chemical reactions, but it is invalid for undeveloped delayed
chemical reactions. In the following section, based on the
notations in this section, we propose our stochastic simulation
algorithm to cope with undeveloped chemical reactions with
time delays.

III. THE UNDEVELOPED DELAYED STOCHASTIC
SIMULATION ALGORITHM

In this section, we propose a stochastic simulation al-
gorithm to cope with undeveloped chemical reactions with
time delays, for simplicity, we call this algorithm as unde-
veloped delayed stochastic simulation algorithm (UDSSA).
The UDSSA is also based on the direct Gillespie algorithm.
Suppose we have established the following delayed differential
equation model for a biochemical system:

ẋi = fi(t; x1(t), x2(t), ..., xN (t);

x1(t − τ1), x2(t − τ2), ..., xN (t − τN );λi)

−gi(t; x1(t), x2(t), ..., xN (t);

x1(t − τ1), x2(t − τ2), ..., xN (t − τN ); θi).

i = 1, 2, ..., N. (1)

Where xi(i = 1, 2, ..., N) denotes the concentration of the
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i′th species. τi denotes the time delay for the i′th species. λi

and θi are two sets of parameter vectors for the i′th equation
of system (1). fi(t; x1(t), x2(t), ..., xN (t);x1(t − τ1), x2(t −
τ2), ..., xN (t−τN );λi) and gi(t; x1(t), x2(t), ..., xN (t);x1(t−
τ1), x2(t − τ2), ..., xN (t − τN ); θi) are non-negative functions
of t, x1(t), x2(t), ..., xN (t), x1(t − τ1), x2(t − τ2), ..., xN (t −
τN ), which represent the comprehensive generation rate and
consumption rate, respectively.

For systems without time delays, Gonze and Goldbeter
and coauthors [17] have proved that the deterministic ODE
models for biochemical systems can be rewritten as birth-
death biochemical reactions. And the birth-death biochemi-
cal reactions were called as undeveloped stochastic models,
the stochastic models can be simulated by Gillespie’s direct
method. They have shown the effectiveness of the stochastic
models in investigating the dynamics of the circadian system.

Following the method of Gonze et al., we rewrite system
(1) as stochastic birth-death reactions, which are listed in
Tab.1.

TABLE I. UNDEVELOPED STOCHASTIC MODEL DIRECTLY FROM
SYSTEM (1).

Reaction Propensity function Increment of molecular numbers

∅ ai−−→ Xi ai (0, 0, ..., 0, 1︸︷︷︸
i′th

, 0, ...0, 0)T

Xi
bi−→ ∅ bi (0, 0, ..., 0, −1︸︷︷︸

i′th

, 0, ...0, 0)T

Where

ai = Ωfi(t; X1(t)/Ω, ..., XN (t)/Ω;

X1(t − τ1)/Ω, ..., XN (t − τN )/Ω;λi);

bi = Ωgi(t; X1(t)/Ω, ..., XN (t)/Ω;

X1(t − τ1)/Ω, ..., XN (t − τN )/Ω; θi);

i = 1, 2, ..., N. (2)

Ω denotes system volume. Xi(t) represents the molecular
number for the i′th species at time t. It is noted that, if
fi(.) and gi(.) were the sum of serval separate terms, then
the reactions in (2) should be divided into several separate
birth and death reactions for species Xi.

Let’s give our stochastic simulation algorithm for bio-
chemical reactions as presented in Tab.1 and Eq.(2). Most
parts of the stochastic simulation processes are similar to the
direct Gillespie algorithm, except that when one computes
the propensity functions with time delays. The main idea of
treating the delayed propensity functions is that, when we
compute the propensity functions with time delays at time t, we
use the history values of Xi at time t− τi to replace the terms
Xi(t − τi)(i = 1, 2, ..., N). We note that, since the reaction
time steps are randomly generated, therefore, the values of
Xi(t − τi)(i = 1, 2, ..., N) can not be always exactly derived,
one can only guarantee to call the closest history values at
time points td, where |td − (t − τi)| has the minimum value.
Detailed procedures of the UDSSA algorithm are as follows:
The UDSSA:
Step 1. Input values for initial history state X(t0) =
(X1(t0), ..., XN (t0))

T for the N species, where t0 ≤ 0. Input
time delays τ1, ..., τN . Input the stop time tstop and set time

t = 0 and reaction counter COUNT = 1.
Step 2. When time t < tstop, compute propensities aµ, bµ, µ =
1, ..., N for the 2N reaction channels, where the closest history
values of Xi(t− τi) is used to compute aµ, bµ. Then compute
the total propensity a0 = Σµ(aµ + bµ), if a0 = 0, stop, else
go to step 3-6.
Step 3. Generate uniform random numbers u1, u2 ∈ [0, 1].
Step 4. Compute the time interval until the next reaction
∆ti = −lnu1/Σµaµ.
Step 5. Find the channel of the next reaction j, namely take
j to be the integer for which Σj−1

v=1av < u2a0 ≤ Σj
v=1av .

Step 6. Update X according to the j′th reaction channel,
update time t = t + ∆ti, and increase counter COUNT =
COUNT + 1, go to step 2.

Obviously, this method is not an exact algorithm, however,
we can numerically prove the powerful of the UDSSA to
simulate stochastic models directly from deterministic delayed
models.

IV. NUMERICAL EXAMPLES

A. Example 1: The single gene auto-repression

First of all, we consider a simple example, where there is
a single gene X , a protein molecule is produced by this gene
with a delay after the transcription process is initiated. And the
protein molecular further form dimer and act as a repressor,
which inhibit the expression of gene X . We denote the time

TABLE II. CHEMICAL REACTIONS IN THE SINGLE GENE
AUTO-REPRESSION SYSTEM.

Fast reactions Dissociation const. Slow reactions React. rates
X + X 
 X2 K1 D → D + X r1

D + X2 
 DX2 K2 X → ϕ r2

delay as τ , D represents free promoter binding site for gene
X , for simplicity, we also use X, X2 to denote the protein
number and the dimer number. By the law of mass action and
the conservation law [D]+[DX2] = constant, we can deduce
the mathematical model for this system as:

ẋ =
α

1 + x2(t − τ)
− βx. (3)

Where α, β represent the maximal dimensionless transcrip-
tional rate and the degradation rate, respectively. One sets
α = 2, β = 0.5, τ = 10 in system (3). We can transform
system (3) into birth-death processes. The birth process is:
ϕ → X , with the propensity function

a1 =
Ω3α

Ω2 + X2(t − τ)
.

The death process is X → ϕ, with the propensity function

b1 = βX.

Deterministic simulation result of system (3) by using
DDE23 in Matlab, and stochastic simulation results for the
birth-death processes based on the UDSSA are shown in Fig.1.
In our stochastic simulations, we have set τ = 10,Ω = 10 and
Ω = 50. From the simulation results, we see that the stochastic
algorithm can well reflect the dynamics of the system. With the
increasing of system volumes, the stochastic evolution curves
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of molecular numbers can well approximate the deterministic
one [19]. Fig.2 shows the case with τ = 2,Ω = 10, where
the system can only converge to its single stable steady state,
since the delay is too weak to induce oscillations.

B. Example 2: The toggle switch genetic circuits

Next, we consider the two-component toggle switch system
[22], where there are two genes X,Y in the circuit. The
product of one gene represses the expression of the other
gene. And the two genes consist a positive feedback loop.
We use Dx, Dy to denote free promoter binding sites for
gene X and Y . For simplicity, we also use X, Y to denote
proteins that produced by gene X,Y. X2, Y2 represent dimers,
which can combine with promoter sites and regulate the
expression of the other gene. We further suppose the total
concentration of promoter binding sites for the two genes
are constants,and denoted by [DxT ], [DyT ],respectively. Basic
biochemical reactions are listed in Tab.III.

TABLE III. CHEMICAL REACTIONS IN THE GENETIC TOGGLE SWITCH
SYSTEM.

Fast reactions Dissociation constant
X + X 
 X2 K1

Y + Y 
 Y2 K2

Dy + X2 
 DyX2 K3

Dx + Y2 
 DxY2 K4

Slow reactions Reaction rates
Dx → Dx + X r1

Dy → Dy + Y r2

X → ϕ r3

Y → ϕ r4

Conservation laws
[Dx] + [DxY2] = [DxT ] [Dy ] + [DyX2] = [DyT ]

Similar to the case of the single gene circuit, one can
deduce delayed differential equation model for the toggle
switch system as follows:

{
ẋ = α1

1+y2(t−τ2)
− β1x,

ẏ = α2

1+x2(t−τ1)
− β2y,

(4)

Where τ1, τ2 are time delays. αi and βi are dimensionless
maximal transcriptional rates and degradation rates, respec-
tively. The corresponding undeveloped stochastic models are
shown in Tab.IV.

TABLE IV. UNDEVELOPED STOCHASTIC MODEL DIRECTLY FROM
SYSTEM (4).

Reaction Propensity function Increment of molecular numbers

∅ a1−−→ X a1 =
Ω3α1

Ω2+Y 2(t−τ2)
(1, 0)T

X
b1−−→ ∅ b1 = β1X (−1, 0)T

∅ a1−−→ Y a2 =
Ω3α2

Ω2+X2(t−τ1)
(0, 1)T

Y
b1−−→ ∅ b2 = β2Y (0, −1)T

First of all, we take α1 = 4, α2 = 5, β1 = 0.25, β2 =
0.5, τ1 = 5, τ2 = 8. In stochastic simulations, we also set
system volume Ω = 10. From deterministic simulation results
of panel (a) in Fig.3, we see that the system has two stable
steady states, since under two sets of arbitrarily chosen initial
conditions, the system converges to two sets of different steady
states. Panel (b) of Fig.2 shows the stochastic simulation
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Fig. 1. Deterministic and stochastic simulation results for the single gene
auto-repression system. Here, τ = 10. Panel (b) shows the stochastic
simulation result with Ω = 10. Panel (c) shows the result with Ω = 50.
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Fig. 2. Deterministic and stochastic simulation results for the single gene
auto-repression system. Where τ = 2, Ω = 10.
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Fig. 3. (a) Deterministic and (b) stochastic simulation results for the
undeveloped delayed toggle switch system. Where τ1 = 5, τ2 = 8, Ω = 10
for panel (b).

results by using the proposed UDSSA. From the results of the
UDSSA, one can also derive two sets of steady states under
different sets of initial molecular numbers, and the molecular
numbers are just about 10 fold of the deterministic ones. Which
demonstrates the effectiveness of the UDSSA to reflect system
dynamics.

Intrinsic noise in the toggle switch system can induce
bistable behaviors [19]. For the cases in Fig.3, although the
system can display bistable behavior, there are no bistable
switch in the stochastic simulations. To verify whether the
UDSSA can simulate bistable switch behaviors, we randomly
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Fig. 4. Deterministic (a) and stochastic simulation (b) results for the toggle
switch system. Panel (c) shows the distribution of molecular numbers for X .
Here, we have set α1 = 1, β1 = 0.5, α2 = 0.5, β2 = 0.25, τ1 = 1, τ2 =
2, Ω = 10.
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choose another set of parameters, that is α1 = 1, β1 =
0.5, α2 = 0.5, β2 = 0.25, τ1 = 1, τ2 = 2,Ω = 10.
Then, the system is also bistable, and stochastic simulation
results show that intrinsic noise can induce bistable switch
behavior, and molecular numbers distribution for X shows
bimodal distribution, which is a typical feature of bistability.
Therefore, the example of the two genes system demonstrates
the effectiveness of the UDSSA in investigating intrinsic noise-
induced behaviors.

V. CONCLUSION

In this paper, we have proposed a SSA for biochemical
reactions with delays, called UDSSA. This algorithm can
realize the comparison between deterministic delay models for
biochemical systems and its stochastic counterparts. A main
difference of the UDSSA from the other algorithms is that, the
UDSSA can cope with the cases that the propensity functions
are highly nonlinear and contain time delays. The main idea of
the UDSSA is that, if there were time delays in the propensity
functions, history values for molecular numbers are used to
compute the propensity functions. Since time steps of the SSA
are randomly generated, therefore, in the UDSSA, we can only
guarantee that the closest history molecular values are used.
Thus, the UDSSA is not an exact algorithm.

However, the UDSSA can exactly reflect the stochastic dy-
namics in biochemical systems rewritten from the deterministic
models. From two examples, we find that the simulation results
by the UDSSA are well consist with the deterministic ones,
and the stochastic results can reflect the effect of intrinsic noise
and system sizes. Moreover, when time delays are zeros, the
UDSSA degenerates into the direct Gillespie algorithm.
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