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Abstract—Mathematical models have been used to under-
stand the factors that govern infectious disease progression in 
viral infections. In this paper, based on the standard mass action 
incidence, an anti-HBV therapy model with time-delayed 
immune response is set up. The time-delay is used to describe the 
period of time for antigenic stimulation to generate CTLs. The 
globally asymptotically stable analysis of the infection-free 
equilibrium is given in the paper. Some conditions for Hopf 
bifurcation around endemic equilibrium to occur are also 
obtained by using the time delay as a bifurcation parameter. 
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I.  INTRODUCTION  
Chronic hepatitis B caused by the hepatitis B virus (HBV) 

remains a major global health problem. About 2 billion people 
have been infected with the virus, with 5 million new cases 
each year [1]. It is estimated conservatively that there are 350 
million persistent carriers of HBV worldwide, 25% of whom 
have chronic liver disease and cirrhosis, which could progress 
to hepatocellular carcinoma [2]. 

Mathematical models have been used to understand the 
factors that govern infectious disease progression in viral 
infections. The use of mathematical models to enhance our 
understanding of the dynamics of chronic viral infections has 
proven fruitful [3, 4, 5]. The use of mathematical models to 
interpret experimental and clinical results has made a 
significant contribution to the fields of anti-HIV, HBV and or 
HCV infections [6, 7, 8]. 

It is currently widely accepted that HBV infection is non-
cytopathic. Note that the immune response after viral infection 
is universal and necessary to eliminate or control the disease.                                                     

 Based on bilinear mass action incidences, Nowak and 
May [9] give the following immune models: 
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where x, y, v and z are numbers of uninfected (susceptible) 
cells, infected cells, free virus and CTLs respectively. 
Uninfected cells are assumed to be produced are the constant 
rateλ, die at the rate of dx and become infected at the rate of 

vxβ . Infected cells are thus produced at the rate of vxβ and are 
assumed to die at the rate ay . The infected cells were killed by 

immune response at the rate of pyz . Free virus are assumed to 
be produced from infected cells at the rate of ky , and are 
removed at the rate of vµ . CTLs immunne response to virus 
activation are described by ( , )f y z and are assumed to die at 
the rate of bz . Here ( , )f y z can be ,cyz cy  or c under different 
assumption. 

Time delays can’t be ignored in virus infection immune 
models. As shown in paper [10] and [11], antigenic stimulation 
generating CTLs may need a period of timeτ , i.e., the CTLs 
response at time t may depend on the population of antigen at a 
previous time t τ− .  

On the other hand, there exists cytokine-mediated ‘cure’ 
of infected cells during HBV infection [12, 13]. In this paper, 
based on standard mass action, considering the cytokine-
mediated ‘cure’ of infected cells, we will discuss the following 
HBV therapy delay immune models: 
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             (1.2) 

Here infected hepatocytes are ‘cured’ by noncytolytic 
processes at a constant rate ρ per cell, 2k means the therapy 
effect of adefovir dipivoxil and 2k k< , other parameters are the 
same as above model (1.2). In the following sections, we  let 

2k k k= − . 
This paper is organized as follows. In Section II, we will 

give the global stability analysis of infection-free equilibrium 
and study the dynamical behaviour of the endemic equilibrium 
of system (1.2). The local stability of the endemic equilibrium 
and the existence of Hopf bifurcation around the endemic 
equilibrium were given. At last, this paper ends with a 
brief conclusion in Section III. 

 

II. STABLE ANALYSIS  
We adopt the following notation to system (1.2): R4 is a 

four-dimensional real Euclidean space with norm   ⋅ . For 0τ > , 

we denote by 4([ ,0], )C C Rτ= − the Banach space of continuous 
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functions mapping the interval [ ,0]τ− into R4 with the topology 
of uniform convergence, i.e., for Cφ ∈ , the norm of φ  is 
defined as 

0
sup ( )
τ θ

φ φ θ
− ≤ ≤

= . The nonnegative cone of C is 

defined by 4([ ,0], )C C Rτ+
+= − . The initial conditions for system 

(1.2) is given as  

1 2 3 4( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),x y v zθ φ θ θ φ θ θ φ θ θ φ θ= = = =  

which 0τ θ− ≤ ≤ . For biological meaning, the initial function 
1 2 3 4( , , , )ϕ φ φ φ φ= belongs to C+ . From [14] and [15], it is easily 

seen that the solution ( ( ), ( ), ( ), ( ))x t y t v t z t with above initial 
condition exists for all 0t ≥ and is unique. Furthermore, it can 
also be shown that  

( ) 0, ( ) 0, ( ) 0, ( ) 0.x t y t v t z t> ≥ ≥ ≥                        (2.1)                                                                                          
The system (1.2) has two equilibrium points 

0 ( / ,0,0,0),E dλ= 1 ( , , , )E x y v z=  

which represent the infection-free equilibrium and the endemic 
infection equilibrium respectively, which  

2( / ) , , ,ay pc b y ky cyx v z
d b

λ
µ

− −
= = =  

and y is the positive solution of equation: 

2 2
3 2

2

2

(2 )

( ) ( ) 0
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b b b b b

ka pc ka a da d y a
b

ρ β
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β λ β λρ ρ λ ρ
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+ + − − − − + − + =

 

Note that when / , /v ky z cy bµ= = were substituted into the 
second equation of (1.2),  we can have  

1
( )

k x pcy
a x y ab
β
ρ µ

= +
+ +

 

The above equation holds only if 0 / ( ) 1R k aβ ρ µ= + > , 
which shows the endemic infection equilibrium could only 
exist when 0 / ( ) 1R k aβ ρ µ= + > . The following of this section 
is to study the stability of the infection-free equilibrium 0E  and 
the endemic infection equilibrium 1E when 0.τ ≥  

A. Boundedness of solutions  

First, we will give the boundedness of system (1.2). 

Theorem 2.1. There is an M > 0, such that, for any positive 
solution ( ( ), ( ), ( ), ( ))x t y t v t z t of model (1.2), we have  

( ) , ( ) , ( ) , ( ) .x t M y t M v t M z t M< < < <  

Proof.  Let 

( ) ( ) ( ) ( ) ( ).
3 3
a aN t x t y t v t z t
k c

τ= + + + +  

Calculating the derivative of ( )N t along the solutions of the 
system (1.2) gives 

( ) ( ) ( ) ( ) ( ) ( )
3

( ) ( ) ( )
3 3 3
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( ) ( ) ( ) ( )
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k c
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λ

µ τ
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≤ − − − − +

= −



 

Which { }min , / 3, ,q d a bµ= , so, ( ) /N t qλ ε< + for all large t, 
where ε is an arbitrarily small positive constant. Thus, we can 
get that ( ), ( ), ( )x t y t v t and ( )z t are ultimately bounded by some 
positive constant M. 

B. Stability of the infection-free equilibrium 0E    

Theorem 2.2. (1) If 0 1R < , the infection-free equilibrium 
point 0E is locally asymptotically stable for any delay 0.τ ≥  

(2) If 0 1R > , the infection-free equilibrium point 0E is 
unstable for any delay 0.τ ≥   

(3)  If 0 1R = , it is a critical case. 

Proof. Let ( , , , )E x y v z= be an arbitrary equilibrium of 
system (1.2), the characteristic equation about E is given by 

11 2

222

0
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x y x y

k s
ce s bτ
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− −
+ +

− −∆ = =
+ +

− +
− +

 

which 

11 222 2, .
( ) ( )

vy vxJ s d J s a pz
x y x y
β β ρ= + + = + + + +
+ +

 

The characteristic equation evaluated at 0E reduces to  

        
0

0
0 0

0.
0 0
0 0s

E

s d
s a

k s
ce s bτ

ρ β
ρ β

µ
−

+
+ + −

= =
− +

− +

∆             (2.2) 

Obviously, (2.2)  has the following characteristic roots: 

1 2

2

3,4

, ,

( ) ( ) 4[( ) ]
.

2

s d s b

a a a k
s

ρ µ ρ µ ρ µ β

= − = −

− + + ± + + − + −
=

 

If 0 1R < , the four characteristic roots are all negative, so the 
equilibrium point 0E is locally asymptotically stable for any 
delay 0.τ ≥  
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If 0 1R > , the characteristic roots 3s  must be positive, the 
infection-free equilibrium point 0E  is unstable for any delay 

0.τ ≥  
If 0 1R = , the characteristic roots 1s , 2s , 4s are negative, 3s is 

zero, which implies the trivial solution system of (1.2) is stable 
for any time delay 0τ ≥ , this proves the third conclusion. 

Now we will give the globally asymptotically stability 
analysis of the infection-free equilibrium point 0E of system 
(1.2). From the first and second equation, we can have 

min{ , }( )x y a d x yλ+ ≤ − +  , a simple comparison arguments 
shows that we can have the following lemma. 

Lemma 2.1. For any solution ( )x t , ( )y t , ( )v t , ( )z t  of (1.2), 
we have that 

limsup( ( ) ( ))
min{ , }t

x t y t
a d
λ

→∞
+ ≤ . 

Theorem 2.3. (1) If 0 1R < , the infection-free equilibrium 

0E  of system (1.2) is globally asymptotically stable for any 
time delay 0.τ ≥  (2) If 0 1R = , the infection-free 
equilibrium 0E of system (1.2) is globally attractive for any 
time delay 0.τ ≥  

Proof.  Define 

1 2 3 4 1 2

1 2 3 4

{( , , , ) / min{ , } 0,
, 0, 0, 0}.

G C a dφ φ φ φ λ φ φ
φ φ φ φ

+= ∈ ≥ + ≥

≥ ≥ ≥
 

Form lemma 1, we can prove G is a positively invariant with 
respect to system (1.2). For any 1 2 3 4( , , , ) Gφ φ φ φ φ= ∈ , let 
( ( ), ( ), ( ), ( ))x t y t v t z t be the solution of (1.2) with the initial 
function φ , we claim that ( ) ( )x t y t+ ≤ / min{ , }a dλ  for any 

0t ≥ , In fact, if 1 1( ) ( ) / min( , )x t y t a dλ+ >  for any 1t , then we 
have  

1 1 1 1 1 1

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
min{ , }( ( ) ( )) ( ) ( ) 0

x t y t dx t ay t py t z t
a d x t y t py t z t

λ
λ

+ = − − −
≤ − + − ≤

 

. 

which is contradict to 1 1( ) ( ) 0x t y t+ >  . The claim is proved. 
        If 0 1R < , we define a Lyapunov functional W on G as 
follows: 

0

2 3 4 2( ) (0) (1 ) (0) (0) ( ) ,kW d
a k c τ

ε εφ φ φ φ ε φ ξ ξ
ρ −

= + − + +
+ ∫ , 

        where 0k ε> > is a positive constant to be chosen later. It 
is clear that ( )W φ is continuous on G . Calculating the time 
derivative of W along the solution of system (1.2), we obtain  

1 3
(3) 2 2 4 2

1 2

2 3 2 3

2 4 2 2

1 3 2 4

1 2

4 3 3

(0) (0)= ( (0) (0) (0) (0))
(0) (0)

(0) (0) (0) (0)

( ) (0) (0) ( )

(0) (0) (0) (0)
( )( (0) (0)) ( )

(0) (0) (0)

kW a p
a

k
k

b
c

k kp
a a
b
c k

k

βφ φ φ φ φ ρφ
ρ φ φ

εµφ µφ εφ φ

εεφ τ φ εφ εφ τ

βφ φ φ φ
ρ φ φ ρ

ε εµφ µφ φ

βφ

− − −
+ +

+ − − +

+ − − + − −

= −
+ + +

− − +

≤



3 2 4
3 3 4

2 4
3 4

(0) (0) (0)(0) (0) (0)

(0) (0)(( 1) ) (0) (0)
( )

kp b
a k a c

k kp b
a k a c

εµ φ φ εµφ φ φ
ρ ρ
β ε φ φ εµ φ φ
ρ µ ρ

− + − −
+ +

= − + − −
+ +

          

Since 0 1
( )

kR
a

β
ρ µ

= <
+

, then there must be a positive 

constant 0ε >  such that 

( 1) 0
( )

k
a k

β ε
ρ µ

− + <
+

, 

Thus 0V ≤ for any Gφ ∈ . This shows that ( )w φ is a Liapunnov 
functional on the subset G  in C+ . Define  

(3){   0}E G Wφ= ∈ = , 

 we have  

3 4{   (0) 0, (0) 0}.E Gφ φ φ⊂ ∈ = =  

Let M be the largest set in E which is invariant with respect to 
(1.2). Clearly, M is not empty since ( / ,0,0,0)d Mλ ∈ . For 
any Mφ ∈ , let ( ( ), ( ), ( ), ( ))x t y t v t z t be the solution of (1.2) with 
the initial function φ . From the invariance of M , we have 
that ( ( ), ( ), ( ), ( ))x t y t v t z t M E∈ ⊂  for any t R∈ . 
Thus ( ) 0v t ≡ , ( ) 0z t ≡  for any t R∈ .From the third equation of 
(1.2), we further have ( ) 0y t ≡ for any t R∈ . From the first 
equation of (1.2), we can also have ( ) /x t dλ→ as t →+∞ , the 
invariance of M also implies ( ) /x t dλ≡ for any 
t R∈ .Therefore, ( / ,0,0,0)M dλ= .The classical Liapunov-
LaSalle invariance principal [15] shows that 0 ( / ,0,0,0)E dλ=  
is globally attractive. Since 0E is locally asymptotically stable, 
hence 0E is globally asymptotically stable for any time delay 

0.τ ≥  
If 0 1R = , we define the following functional on G : 

2 3( ) (0) (0)kW
a

φ φ φ
ρ

= +
+

 

It is clear that ( )W φ is continuous on G . Calculating the time 
derivative of W along the solution of system (1.2), we obtain  
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1 3
(3) 2 2 4

1 2

2 2 3

1 3 2 4
3

1 2

3 2 4
3

2 4
3

(0) (0)( (0) (0) (0)
(0) (0)

(0)) (0) (0)

(0) (0) (0) (0) (0)
( )( (0) (0)) ( )

(0) (0) (0) (0)

(0) (0)( ) (0)
( )

kW a p
a

k

k kp
a a

k kp
a a

k kp
a a
k

βφ φ φ φ φ
ρ φ φ

ρφ φ µφ

βφ φ φ φ µφ
ρ φ φ ρ

βφ φ φ µφ
ρ ρ
β φ φµ φ
ρ ρ

= − −
+ +

− + −

= − −
+ + +

≤ − −
+ +

= − −
+ +

= −



2 4(0) (0) 0p
a

φ φ
ρ

≤
+

 

So ( )W φ is a Liapunnov functional on the subset G  in C+ . 

Define (3){   0},E G Wφ= ∈ =  we have  

2 4{ (0) 0 or (0) 0}E φ φ⊂ = = . 

Let M be the largest set in E which is invariant with respect to 
(1.2). Clearly, M is not empty since ( / ,0,0,0)d Mλ ∈ . For 
any Mφ ∈ , let ( ( ), ( ), ( ), ( ))x t y t v t z t be the solution of (1.2) with 
the initial function φ . From the invariance of M , we have 
that ( ( ), ( ), ( ), ( ))x t y t v t z t M E∈ ⊂  for any t R∈ . If 2 (0) 0φ = , thus 

( ) 0y t ≡ for any t R∈ . From the third equation of (1.2), we can 
have ( ) 0v t →  as t →+∞ , the invariance of M implies 
that ( ) 0v t ≡ for any t R∈ . Similarly, we also have ( ) 0z t ≡ for 
any t R∈ . Since ( ) 0y t ≡ , ( ) 0v t ≡ , the first equation of (1.2) can 
also ensure ( ) /x t dλ≡ . 
       If 4 (0) 0φ = , we have ( ) 0z t ≡ for any t R∈ . So the fourth 
equation of (1.2) can ensure ( ) 0y t = , by a completely similar 
proof as for the case 2(0) 0φ = , we have 
that ( ) 0v t ≡ , ( ) /x t dλ≡ for any t R∈ . So we have 

( / ,0,0,0)M dλ= . Liapunov-LaSalle invariance principal [15] 
shows that 0 ( / ,0,0,0)E dλ= is globally attractive for any time 
delay 0.τ ≥  

C. Stable analysis of the endemic infection equilibrium 1E   

       In this section, we will consider the dynamical behavior of 
endemic equilibrium 1E . By using the time delay τ as a 
bifurcation parameter, some conditions for Hopf bifurcation 
around equilibrium 1E  to occur are obtained. 
        For endemic equilibrium 1 ( , , , )E x y v z= , the characteris-
tic equation about (1.2) is given by 
 

11 2

222

0
( ) ( )

0,
( ) ( )

0 0
0 0s

vx xJ
x y x y

vy xJ py
x y x y

k s
ce s bτ

β βρ

β β

µ
−

− −
+ +

− −∆ = =
+ +

− +
− +

 

Which  

11 222 2, .
( ) ( )

vy vxJ s d J s a pz
x y x y
β β ρ= + + = + + + +
+ +

 

i.e., 
4 3 2 2

1 2 3 4 2 3 4( ) 0ss p s p s p s p q s q s q e τ−+ + + + + + + =         (2.3)  

where 

1 2( )
vyp b d

x y
βµ= + +Ω + +
+

2 2

2 2

4 2

( ) ( )( )
( )

( ) ( )

vyp b d b
x y

v yx x vyk
x y x y x y

βµ µ µ

β β ρβ

= +Ω + Ω + + + +Ω
+

− − −
+ + +

 

3 2 2

2 2

4 2

( ) ( )
( ) ( )

( ) ( )
( ) ( )

vy vyp b d b
x y x y

v yx x x vyb kb dk b
x y x y x y x y

β βµ µ

β β β ρβµ µ

= Ω + + + + Ω
+ +

− + − − − +
+ + + +

2 2

4 2 4 2( )
( ) ( ) ( )

vy v yx x vyp b d b dkb b
x y x y x y x y
β β β ρβµ µ µ= + Ω − − −
+ + + +

2q cpy=  

3 2( )
( )

vyq cpy d
x y
β µ= + +
+

 

4 2( )
( )

vyq cpy d
x y
β µ= +
+

 

2( )
vx a pz

x y
β ρΩ = + + +
+

 

Note that when the delay 0τ = , equation (2.3) becomes 
4 3 2

1 2 2 3 3 4 4( ) ( ) 0s p s p q s p q s p q+ + + + + + + =  
By the Routh-Hurwizt criteria, we can know that all roots of 
(2.3) would have negative real parts if the following condition 
holds: 

     

1 1 2 2 3 3
2 2

1 2 2 3 3 1 4 4 3 3
2 2

1 2 1 3 4 4 1 4 4

3 3 1 3 4 4

0, ( ) ,
( )( ) ( ) ( ) ,

( )( ) ( )
( )( )( ).

p p p q p q
p p q p q p p q p q
p p p p p q p p q

p q p p p q

> + > +
 + + > + + +
 + + > +
+ + + +

     (2.4)     

When 0τ ≠ , let ( ) ( ),s iϕ τ ψ τ= +  which ( ), ( ) ,Rϕ τ ψ τ ∈  
rewriting (2.3) in terms of its real and imaginary parts, we can 
get 

4 2 2 4 3 2
1

2 2
2 3 4

2 2
2 3 4

2 3

6 ( 3 )

( )

{[ ( ) ( )]cos( )
(2 )sin( )}

p
p p p

e q q q
q q

τφ

φ φ ψ ψ φ φψ

φ ψ φ

ψ φ φ τψ
φψ ψ τψ

−

− + + −

+ − + +

= − − +
− +

                  (2.5) 

 
2 2 2 3

1 2 3
2 2

2 3 4

2 3

4 ( ) (3 ) 2

{[ ( ) ( )]sin( )
(2 ) ( )}

p p p
e q q q

q q c os

τφ

φψ φ ψ φ ψ ψ φψ ψ

φ ψ φ τψ
φψ ψ τ ψ

−

− + − + +

= − + +
− +

          (2.6) 

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

89 Huangshan, China, August 23–25, 2013



Let τ be such that ( ) 0, ( ) ,ϕ τ ψ τ ψ ∗= = the above equations 
reduce to 

*4 *2 *2 * * *
2 4 2 4 3

*3 * *2 * * *
1 3 2 4 3

( )cos( ) sin( )

( )sin( ) cos( )

p p q q q
p p q q q
ψ ψ ψ τψ ψ τψ

ψ ψ ψ τψ ψ τψ

− + = − −

− = − +
  (2.7)  

Eliminating τ , we have 
*8 2 *6 2 2 *4

1 2 2 4 1 3 2
2 2 *2 2 2
3 2 4 3 2 4 4 4

( 2 ) ( 2 2 )

( 2 2 ) 0

p p p p p p q
p p p q q q p q

ψ ψ ψ

ψ

+ − + + − −

+ − − + + − =
    (2.8) 

Suppose that 1ψ ∗  is the last positive simple root of equation 
(2.8), we now show that with this value of 1ψ ∗ , there is a 1τ

∗  
such that 1( ) 0ϕ τ ∗ = and 1 1( )ψ τ ψ∗ ∗= .  Given 1ψ ∗ , equation (2.7) 
can be written as 

1 1 1 1

1 1 1 1

cos( ) sin( )

sin( ) cos( )

U A B
V A B

τ ψ τ ψ

τ ψ τ ψ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= +

= −
                        (2.9) 

where  
*2 *4 3

2 1 1 4 3 1 1 1
2 2 2 2 2 2

4 2 1 3 1

, ,

, , ,
0

U p p V p p
A q q B q U V A B H
H

ψ ψ ψ ψ

ψ ψ

∗ ∗

∗ ∗

= − − = −

= − = + = + =
>

       (2.10) 

The equation cos , sinA H B Hθ θ= = Determines a unique 
[0,2 ]θ π∈ , with this θ ,we have 

1 1 1 1

1 1 1 1

cos( )cos sin( )sin

sin( )cos cos( )sin

U H H
V H H

τ ψ θ τ ψ θ

τ ψ θ τ ψ θ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= +

= −
          (2.11)  

Hence 1 1cos( )U H τ ψ θ∗ ∗= − , 1 1sin( )V H τ ψ θ∗ ∗= − , The equation 
(2.11) determine 1 1τ ψ θ∗ ∗ −  uniquely in [0,2 )π , which determine 

1
1 1

2[ , )θ π θτ
ψ ψ

∗
∗ ∗

+
∈  uniquely. 

       In order to apply the Hopf bifurcation theorem as stated in 
[16], we need the following lemma: 

Lemma 2.2 ([17]) Suppose equation (2.8) has at least one 
simple positive root and 1ψ ∗ is the last such root. Then, 

1 1( )i iψ τ ψ∗ ∗= is a simple root of equation (2.3) and ( ) ( )iφ τ ψ τ+  
is differentiable with respect to τ  in a neighborhood of 1τ τ ∗= . 

       Next, to establish Hopf bifurcation at 1τ τ ∗= , we need to 
verify the transversality condition 

1

0d
d τ τ

φ
τ ∗=

≠                                         (2.12) 

Differentiating Eq. (2.5) and (2.6) with respect toτ , and setting 
10,φ ψ ψ ∗= = , we have  

1 1

1 1

1 1

3 2
1 4 2 1 1 3 1 1

1 1

3 2
1 4 2 1 1 3 1 1

( )sin( ) cos( )

( )cos( ) sin( )

d dA B
d d

q q q
d dB A
d d

q q q

τ τ τ τ

τ τ τ τ

φ ψ
τ τ

ψ ψ τψ ψ τψ
φ ψ
τ τ

ψ ψ τψ ψ τψ

∗ ∗

∗ ∗

= =

∗ ∗ ∗ ∗ ∗

= =

∗ ∗ ∗ ∗ ∗

−

= − −

+

= − +

 

where 
2 2

1 3 1 1 2 1 4 3 1

2 1 3 1 1
3 2

1 2 1 1 4 2 1 3 1

2 1 3 1 1

3 ( )cos( )

(2 )sin( )

2 4 ( )sin( )

(2 )cos( )

A p p q q q
q q

B p q q q
q q

ψ τ ψ τ τψ

ψ τ ψ τψ

ψ ψ τ τ ψ τψ

ψ τ ψ τψ

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

= − + − +

+ −

= − + − −

+ −

 

Solving for 
1

d
d τ τ

φ
τ ∗=

with the help of (2.7), we have  

1

2
1

2 2
1 1

d
d A Bτ τ

φ ψ
τ ∗

∗

=

= ∆
+

, 

 where   
  

*6 2 *4 2 2 *2
1 2 2 4 1 3 2

2 2
3 2 4 3 2 4

4 3( 2 ) 2( 2 2 )

( 2 2 )

p p p p p p q
p p p q q q
ψ ψ ψ∆ = + − + + − −

+ − − +
 

                                                               
As 1iψ ∗ is a simple root of (2.3), let 2

1z ψ ∗= , then (2.8) reduce 
to ( ) 0zΦ = , where  

4 2 3 2 2 2
1 2 2 4 1 3 2

2 2 2 2
3 2 4 3 2 4 4 4

( ) ( 2 ) ( 2 2 )

( 2 2 )

z z p p z p p p p q z
p p p q q q z p q

Φ = + − + + − −

+ − − + + −
 

hence 

3 2 2 2 2
1 2 2 4 1 3 2

2 2
3 2 4 3 2 4

4 3( 2 ) 2( 2 2 )

( 2 2 )

d z p p z p p p p q z
dz

p p p q q q

Φ
= + − + + − −

+ − − +
 

Since 1ψ ∗  is the last positive simple root, then 2
1ψ ∗ must be the 

last positive simple root of ( ) 0zΦ = , so we must have  

1

0d
d τ ττ ∗=

Φ
>  

Therefore  

1 1

2
1

2 2
1 1

0d d
d A B dτ τ τ τ

φ ψ
τ τ∗ ∗

∗

= =

Φ
= >

+
               （2.13） 

 Now, we summarize the preceding details in the 
following theorem. 

Theorem 2.4. Suppose equation (2.8) has at least one 
simple positive root and 1ψ ∗ is the last such root, then, there is a 
Hopf bifurcation for the system (1.2) as τ  passes upwards 
through 1τ

∗  leading to a periodic solution that bifurcates 
from 1E . 
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       Next, by the lemma 2.1 in reference [18], we will give the 
sensible conditions that the Hopf bifurcation occurs around 
equilibrium 1E  in the following part. 
       Define 

2 2 2
1 1 2 2 2 4 1 3 2

2 2 2 2 2
3 3 2 4 3 2 4 4 4 4

2 ,  2 2 ,

2 2 ,  ,  .

f p p f p p p p q
f p p p q q q f p q z ψ ∗

= − = + − −

= − − + = − =
 

Then (2.8) reduce to 
4 3 2

1 2 3 4( ) 0z z f z f z f z fΦ = + + + + =  

Thus we have the following lemma: 

Lemma 2.3. ([18]) Suppose 4 0f < , equation (2.8) has at 
least one positive root. 

Now from lemma 2.2, lemma 2.3 and theorem 2.3, we can get 
the following results: 

Theorem 2.5. Suppose 1oR > , and （1） 2 2
4 4 0p q− < ; 

（2） Condition (2.4)   holds; then, there is a Hopf bifurcation 
for the system (1.2) as τ passes upwards through 1τ

∗  leading to 
a periodic solution that bifurcates from 1E . 

III. CONCLUSIONS  
      In this paper, based on standard mass action incidence, we 
have discussed a HBV infection therapy model with delayed 
immune response. A detailed analysis of the locally and 
globally asymptotic stability about the infection-free 
equilibrium 0E  is carried out. While 0 1R < , (hence the endemic 
equilibrium 1E is not feasible), 0E is locally asymptotically 
stable for any 0τ ≥ , when 0 1R = (the endemic equilibrium 1E is 
also not feasible), the system (1.2) at 0E is stable for any 0τ ≥ . 
By Lyapunov-LaSalle type theorem, we have also proved that 
the infection-free equilibrium 0E  is globally asymptotically 
stable for any time delay 0τ ≥  if 0 1R < , which shows that the 
virus could be cleared if therapy effect parameter 2k could make 
the 0 2( ) / (( ) ) 1R k k a uβ ρ= − + < no matter how long the CTL 
immune response would be stimulated, that is to say the final 
therapy effect is independent of τ . But if the treatment rate 

2k could only make 0 1R = , we could prove 0E is globally 
attractive, which shows the level of HBV DNA would reduce 
to very low but couldn’t be cleared. On the other hand, if the 
treatment rate 2k could only make 

0 2( ) / (( ) ) 1R k k a uβ ρ= − + > , 
the model (1.2) would have endemic equilibrium 1E . For given 
parameters, theoretical analysis shows stability in the system 
would vary as the delay factor τ crosses a threshold 1τ

∗  under 
some conditions. That is to say, if the time needed for the 
stimulation of immune is less than 1τ

∗ , the system (1.2) would 
be locally stable, if the immune stimulation time is more than 
the threshold 1τ

∗ , the HBV load would oscillate near the 
equilibrium 1E  which is consistent with the phenomena often 
observed in clinical therapy. 
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