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Abstract—With the development of next-generation 

sequencing and metagenomic technologies, the number of 

metagenomic samples of microbial communities is increasing 

with exponential speed. The comparison among metagenomic 

samples could facilitate the data mining of the valuable yet 

hidden biological information held in the massive metagenomic 

data. However, current methods for metagenomic comparison 

are limited by their ability to process very large number of 

samples each with large data size.  

In this work, we have developed an optimized GPU-based 

metagenomic comparison algorithm, GPU-Meta-Storms, to 

evaluate the quantitative phylogenetic similarity among massive 

metagenomic samples, and implemented it using CUDA 

(Compute Unified Device Architecture) and C++ programming. 

The GPU-Meta-Storms program is optimized for CUDA with 

non-recursive transform, register recycle, memory alignment 

and so on. Our results have shown that with the optimization of 

the phylogenetic comparison algorithm, memory accessing 

strategy and parallelization mechanism on many-core hardware 

architecture, GPU-Meta-Storms could compute the pair-wise 

similarity matrix for 1920 metagenomic samples in 4 minutes, 

which gained a speed-up of more than 1000 times compared to 

CPU version Meta-Storms on single-core CPU, and more than 

100 times on 16-core CPU. Therefore, the high-performance of 

GPU-Meta-Storms in comparison with massive metagenomic 

samples could thus enable in-depth data mining from massive 

metagenomic data, and make the real-time analysis and 

monitoring of constantly-changing metagenomic samples 

possible. 
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I. INTRODUCTION 

Most microbes live and reproduce together as “microbial 

communities” in nature, meanwhile, their activities and 

metabolisms also have profound effect to environment. The 

complete genomic information of an environmental microbial 

community is referred to as “metagenome”. As most of the 

microbes are not isolatable and cultivatable[1], metagenomic 

technology has become one of the most important and efficient 

methods to analyse the structures and functions of microbial 

communities. 

A. Large-scale datasets for microbial communities 

Next-generation sequencing techniques[2] have enabled 

the fast profiling of a large number of metagenomic data. 

Thus, a rapidly increasing number of metagenomic profiles of 

microbial communities have been archived in public 

repositories and research labs around the world, such as 

MG-RAST[3], CAMERA2[4] and NCBI[5] contain 

thousands of metagenomic related works with more than 

10,000 samples. Therefore, it is becoming more and more 

important to compare microbial communities in large scale 

for in-depth data mining for precious biological information 

held in the massive metagenomic data. 

B. Comparison of microbial communities 

A number of methods have been proposed for comparison 

of different metagenomic samples mainly adopting two 

different approaches: taxon-based (using overlap in lists of 

species, genera, OTUs, and so on) and phylogenetic-based 

(using overlaps on a phylogenetic tree). 

For taxon-based methods, many recent pyro-sequencing 

studies have been developed to compare samples. MEGAN[6] 

is a metagenomic analysis tool with recent additions for 

phylogenetic comparisons [7] and statistical analyses[8], 

however, can only compare single pair of metagenomic 

samples based on taxonomy without quantitative 

measurement , as is also the case with STAMP[9], which 

introduces a concept of “biological relevance” in the form of 

confidence intervals. Other methods, such as MG-RAST[3], 

ShotgunFunctionalizeR[10], mothur[11], and METAREP[12] 

process metagenomic data using standard statistical tests 

(mainly t-tests with some modifications), yet would turn out 

to be insufficient in accuracy[13]. 

In phylogenetic-based approaches, such as UniFrac[14] 

and Fast UniFrac[15], utilize the similarities and differences 

among species[16] to make phylogenetic beta diversity 

measurement more effective at showing ecological patterns. 

Nevertheless the sample size and running speed restrictions 

limit the extension on the rapidly increasing scale of 

metagenomic experiments. Recently we have developed 

Meta-Storms [17], a metagenomic database engine for sample 

searching, which also supports quantitative phylogenetic 

comparison of metagenomic samples. However, for many 
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metagenomic samples, the CPU based computation speed 

becomes the bottleneck again in massive data analysis: when 

the number of samples exceeds several hundred, the time-cost 

of comparison increases to be unacceptable. 

II. METHODS 

In this work we have developed GPU-based metagenome 

comparison method, GPU-Meta-Storms, to enable the 

high-speed comparison on massive microbial community 

samples. GPU-Meta-Storms implements the scoring function 

algorithm of Meta-Storms [17] on Compute Unified Device 

Architecture (also refer as “CUDA”) [18] to evaluate the 

quantitative similarity between metagenomic samples with 

high acceleration rate. More importantly, it has designed with 

optimizations in memory accessing, threads invocation, 

register allocation for the many-core architecture of NVIDIA 

GPU. 

A. Scoring function of Meta-Storms 

The scoring function of Meta-Storms [17] compares two 

microbial communities’ structure by calculating the maximum 

common component of their weighted co-phylogenetic tree 

considering the beta-diversity, phylogenetic distance and 

abundance of each species. In this algorithm, initially a 

common binary phylogenetic tree is built, in which leaf nodes 

(Fig. 1, eg. node X) represent species with abundance values 

in two samples (Fig. 1, eg. X.P1= 30% and X.P2 = 40%), as 

well as the branch length indicates the evolutional distance 

from one species to its ancestor. We define the MIN(X) as the 

similarity score for a single species X: 

 

Then the formula Reduce(X) parses the reminding 

component of a node to its ancestor (Fig. 1, eg. X.Anc = N) 

for comparison in higher phylogenetic level multiplied by the 

factor of 1-Dist (Dist is the phylogenetic distance between X 

and X.Anc). 

 

We further define that for an internal node N, its two 

children nodes are N.Left (Fig. 1, eg. node X) and N.Right 

(Fig. 1, eg. node Y). Then the overall similarity score of one 

whole branch in the phylogenetic tree can be calculated 

recursively by this function: 

 

Therefore the overall similarity between two metagenomic 

samples can be calculated by GetSimlairty(R), in which R 

represents the root node of the co-phylogenetic tree of two 

samples. 

 

Fig. 1. An example for common binary phylogenetic tree with leaf node 

abundance and branch length of two metagenomic samples. P1 and P2 values 

are the abundance of two samples in each species. 

B. Non-recursive Transformation 

For the iteration depth and stack size limitation of 

recursive function in GPU and CUDA, formula (3) needs to 

be transformed into no-recursive format. Focusing on a basic 

binary branch with one ancestor node (Fig. 1, eg. node N) and 

its children (Fig. 1, eg. node X and Y), we found that the 

scoring function could be transformed into serial operations 

by poster-order traversal to the branch with following 

formula:  

 

which can be also extended to all nodes of the common 

phylogenetic tree by post-order traversal to all basic branches 

without recursive overlap to transform formula (3) into 

no-recursive format. 

C. CUDA-based implementation 

Based on the many-core architecture of GPU, formula (4) 

can be invocated in parallel by large number of threads of 

CUDA to process the calculation of similarity values among 

different metagenomic samples. For the synchronization of 
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many-core programming, we map all samples to Greengenes 

coreset phylogenetic tree [19], in which inexistent species are 

marked by abundance of 0 . Therefore all threads can parse 

the sample phylogenetic tree using formula (4) for high 

parallelization efficiency. 

To calculate the pair-wise similarity matrix of N samples, 

we launch N * N threads in GPU to make each similarity 

value in the matrix processed by one independent thread. Fig. 

2 shows the process of GPU computing: abundance values of 

species and phylogenetic distances are loaded from the file 

system and initialized in RAM to build the common 

phylogenetic tree by CPU (Fig. 2, step 1), then sent to GPU 

on-board RAM for parallel computing (Fig. 2, step 2). After 

all threads of GPU kernel finish the tasks (Fig. 2, step 3, the 

key step), all elements of similarity matrix are sent back to 

RAM (Fig. 2, step 4), and stored into file system on hard disk 

(Fig. 2, step 5). 

 

Fig. 2. Overview of the GPU based similarity matrix computing 

D. CUDA-based optimization 

Limited by the I/O bandwidth to the GPU on board RAM 

(also refer as “global memory” in CUDA), we have also 

designed the following optimizations to adapt the GPU 

architecture to improve the running speed. 

1) Global memory Alignment 

Since all threads calculate the same phylogenetic tree by 

formula (4) with same node order, their abundance values can 

be sorted in the same order as the leaf nodes (species) and 

aligned straight in the global memory (Fig. 3). Then 

abundance values of each species among different samples 

could be accessed from the same index in the global memory 

(Fig. 3) to accelerate both the transmission from RAM to 

GPU on board memory and the memory access by GPU. 

 

Fig. 3. Global memory alignment of abundance values 

2) Register recycle allocation 

In formula (4), results of each Reduce function (formula 

(2)) need to be added into the ancestor node (refer to formula 

(3) for details). To eliminate the I/O frequency to global 

memory, all internal nodes of the phylogenetic tree are kept 

into registers, of which the I/O speed is about 100 times faster 

than global memory. Theoretically each internal node should 

be assigned to a unique register, which requires a space 

complexity of O(N) (here N is the number of internal nodes). 

However, the available registers limitation of each thread (eg. 

~ 128 registers for each thread in one block of Fermi GPU) is 

smaller than the total amount of internal nodes (eg. in 

Greengene coreset[19] there are >4900 internal nodes). We 

also found that an internal node that has been reduced by 

formula (3) would not be used again, and then its registers 

could be released to reduce the space complexity to be 

constant. In such, we developed a register recycle method to 

cut the total register number to be only 10 for the 

phylogenetic tree of Greengenes coreset[19]. 

3) Application of shared memory 

For all threads calculate on the same phylogenetic tree, 

distance values are stored into shared memory, which can be 

accessed by all threads with low I/O latency, and also reduce 

the I/O access time to global memory in total. 

III. RESULTS& DISCUSSIONS 

In this work, we have used 7datasets of human habitat 

microbial community samples from the project “Moving 

pictures of human microbiome”[20] to evaluate the 

performance of GPU-Meta-Storms of metagenomic 

comparison among different amount of samples in 4 aspects: 

(1) GPU granularity, (2) efficiency of modules (refer to 

section II.C), (3) acceleration rate compared to CPU and (4) 

results consistency compared to CPU. All experiments in this 

work were finished on a rack server with dual Intel Xeon 

E5-2650 CPU (16 cores in total, 2.0GHz), 64GB DDR3 ECC 

RAM, NVIDIA M2075 GPU (448 stream processors and 6GB 

GDDR5 on board RAM) and 1TB hard drive in RAID 1. 
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TABLE 1. THE SAMPLE AMOUNT OF EACH DATASET 

Dataset Sample amount Total size (M) Byte) 

Dataset 1 8 53 

Dataset 2 64 337 

Dataset 3 128 637 

Dataset 4 256 1331 

Dataset 5 512 2663 

Dataset 6 1024 5222 

Dataset 7 1920 9216 

A. Granularity analysis for block size configuration 

In CUDA, threads were grouped into blocks, in which 

computing resources such as registers, shared memory were 

shared among threads; therefore the computing capability of a 

block correlated with the thread number in it. We selected 4 

largest datasets from Table 1 (Dataset 4, 5, 6 and 7) to test the 

running time in different block configuration with (4*4), 

(8*8), (16*16) and (32*32) threads. In this test only the GPU 

running time was recorded excluding the data transfer time 

from file system. 

 

Fig. 4.Similarity matrix computing time of GPU with different block size 

Results had shown that for various amounts of input 

samples, block size of (8*8) cost the least time. The reason 

was that although each block supported maximum thread 

number of 1024 in CUDA, registers' total size was restricted 

to be 32768 Byte for all threads. Since for the calculation of 

formula (4), a single thread needed 21 variables of 152 Byte 

space (Table 2), block size of (8*8) could efficiently use the 

computing resources, while smaller size blocks (4*4) wasted 

the computing capacity and larger blocks (16*16 and 32*32) 

rotated the threads due to the insufficiency of register spaces 

(Table 3). 

 

TABLE 2. THE REGISTER USAGE OF A SINGLE GPU THREAD FOR CALCULATION 

OF FORMULA (4) 

Variable purpose Type Number Size (Byte) 

Phylogenetic tree Parsing Double 10 80 

Abundance value accessing Double 4 32 

Abundance value reduce Double 2 16 

Loop control Integer 1 4 

Thread ID Integer 3 12 

Result Double 1 8 

Total  21 152 

TABLE 3. THE REGISTER SIZE FOR EACH THREAD OF DIFFERENT BLOCK SIZE 

Block size Thread amount Register size (Byte) 

4*4 16 2048 

8*8 64 512 

16*16 256 128 

32*32 1024 32 

B. Efficiency of each module 

Then we focused on the time cost of 5 modules of 

GPU-Meta-Storms illustrated in section II.C and Fig. 2 

including input loading of metagenomic samples, RAM to 

GPU data transfer, GPU kernel computing, GPU to RAM data 

transfer and results save to file system time, which could also 

detect the bottle-neck of the system. We computed the 

similarity matrix of all 7 datasets in Table 1 with block size of 

(8*8) that is considered as the most optimized configuration 

in section III.A, and timed all 5 modules of 

GPU-Meta-Storms. 

 

Fig. 5. Time cost rate of each module of GPU-Meta-Storms 

In Fig. 5 bar-charts represented the time cost rate of 

modules of GPU-Meta-Storms for processing each dataset. In 

GPU-Meta-Storms, 5 modules were affected by 3 factors: a. 

File system bandwidth (for input loading and results saving); 

b. PCI-E bandwidth (for data transfer between GPU and RAM) 

and c. GPU kernel computing ability. Obviously in Fig. 5 that 

input loading and results saving took more than 98% time due 
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to the low average bandwidth of the file system (file system 

bandwidth was calculated by dataset size / loading time), 

which was only 43.32 MB/s. We also checked the time cost of 

data transmission between RAM and GPU via the PCI-E bus, 

and calculated the average PCI-E bus bandwidth was 2.25 

GB/s, which was significantly higher than the file system. As 

the GPU kernel computing cost only less than 2% time on 

average during the test, the file system bandwidth can be 

considered as the bottle-neck in the system. In addition, since 

our file system was based on HDD (Hard Disk Drive), and the 

bottle-neck condition could be improved by replacing HDD 

by SSD (Solid State Disk) which provides much higher 

bandwidth. 

C. Running time comparison with CPU-based computation 

In this work, we also used GPU and CPU to compute the 

similarity matrix of all datasets in Table 1 to show the 

acceleration rate of GPU-Meta-Storms. For CPU computing, 

we tried both the single core and multiple cores (with 16 

threads) and for GPU we used the block size of (8*8). 

Additionally we recorded the time cost of entire program 

including all components described in section III.B.  

 

Fig. 6. Overall running time of similarity matrix computing by CPU and 

GPU.  

 

Fig. 7. Speed up of GPU compared to CPU 

Form the results of Fig. 6 and Fig. 7 we can observe that 

to build out the same similarity matrix GPU had a maximum 

speed up of 3905 times compared to single core CPU and 593 

times to 16-core CPU, which made the similarity matrix of 

1920 metagenomic samples can be constructed within 4 

minutes by GPU-Meta-Storms on Tesla M2075. Since the 

computing was in parallel, the running time did not linearly 

increase with the sample number as CPU, but depended on the 

throughput of GPU thread scheduling and memory access. 

Therefore dense computing with large number of samples 

approached the efficient usage of resource, which made the 

higher speed up rate of large number of samples. Furthermore, 

the high acceleration could not only largely eliminate the 

running time in computing the similarity of metagenomic data, 

but also enabled in-depth data mining among massive 

microbial communities. 

D. Consistency of results between GPU and CPU 

Considering the similarity values computed by CPU as the 

standard, we compared the results of all 7 datasets in Table 

1between GPU and CPU based methods to evaluate the 

accuracy of GPU-Meta-Storms. For each dataset, the error 

ranges with average differences (absolute values) of each 

dataset were illustrated in Fig. 8. 
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Fig. 8. Inconsistency and average error between CPU and GPU computing 

Although hardware difference for float number computing 

(eg. Float Point Unit, FPU) caused the inaccuracy between 

CPU and GPU, supports of double float computing in GPU 

CUDA minimized their inconsistency. From the result of Fig 

8 we can observe that the inconsistency (error range) between 

CPU and GPU computing could be controlled into a restricted 

range and gotten an average error of 6.22E-06, which 

elucidated the reliability of GPU-Meta-Storms. 

IV. CONCLUSIONS 

With the number of metagenomic samples increased 

rapidly, analyzing the large volume of these data quickly 

faces the bottleneck of computation efficiency. In this work 

we proposed an optimized metagenomic comparison 

algorithm based on GPU and CUDA to calculate the 

similarities among a large of microbial community samples 

with very high speed. The GPU-Meta-Storms program is 

optimized for CUDA with non-recursive transform, register 

recycle, memory alignment.  

A large number of human microbial community samples 

have been collected and compared, and our tests have shown 

that this GPU algorithm reduces the computing time largely 

with a speed of more than 500 times compared to the 16 cores 

CPU parallel program for 1920 samples. Specifically, the 

pair-wise similarity matrix of 1920 metagenomic samples to 

be completed within 10 minutes, so that clustering based on 

such a large set of samples could be made. Therefore, 

acceleration techniques based GPU make it possible to 

perform in-depth data mining in massive metagenomic 

samples, as well as make the real-time analysis and 

monitoring of constantly-changing metagenomic samples 

possible.  

 

 

V. MATERIAL AVAILABILITY  

Source code of GPU-Meta-Storms and CPU version 

Meta-Storms with complete manual are available at 

http://www.computationalbioenergy.org/meta-storms.html.  

All 7 datasets of Human habitat microbial community 

samples for test in this work can be accessed from 

ftp://www.computationalbioenergy.org/Meta-Storms/GPU. 
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