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Abstract—Structural Genomics projects are producing 

structural data for proteins at an unprecedented speed. The 

functions of many of these protein structures are still unknown. 

To decipher the functions of these proteins and identify 

functional sites on their structures have become an urgent task. 

In this study, we developed an innovative graph method to 

represent protein surface based on how amino acid residues 

contact with each other. Then, we implemented a shortest-path 

graph kernel method to measure the similarities between graphs. 

We tried three variants of the nearest neighbor method to predict 

enzyme catalytic sites using the similarity measurement given by 

the shortest-path graph kernel. The prediction methods were 

evaluated using the leave-one-out cross validation. The methods 

achieved accuracy as high as 77.1%. We sorted all examples in 

the order of decreasing prediction scores. The results revealed 

that the positive examples (catalytic site residues) were associated 

with higher prediction scores and they were enriched in the 

region of top 10 percentile. Our results showed that the proposed 

methods were able to capture the structural similarity between 

enzyme catalytic sites and would provide a useful tool for 

catalytic site prediction. 
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I. INTRODUCTION 

Over the past decade various structural genomics projects 
[1] have produced structural data for over 75,000 proteins. But 
the functions of many of them are still unknown. To determine 
the functions of these proteins using traditional laboratory 
approaches is laborious and time-consuming. Computational 
methods play an important role to address this problem. Many 
different methods have been proposed for predicting protein 
functions or identifying functional sites on proteins [2-5]. 
Among them are a group of methods based on graph theory [6-
8]. In these methods, graphs are used to describe and analyze 
the geometric and physicochemical properties of protein 
structures. Then, various methods are used to compare graphs 
to identify predictive patterns that are correlated with protein 
function or functional sites. A key step in graph-based structure 
analysis is to measure the similarities between graphs. Graph 
kernels have become a favorite solution to this problem. In a 
simple way, a kernel function is a positive definite matrix that 
measures the similarities between all pairs of input data. 
Originally, kernel methods only took vectors as input. Later, 
researchers developed graph kernel methods that took 2-

dimensional (2D) or 3-dimensional (3D) structures as input [9]. 
These graph kernels varied in what components of the graphs 
they compared, how they searched the components in a graph 
and how they compared each pair of components. The most 
prominent of them was the marginalized kernel [10] that used a 
probability function to model the distribution of labeled walks, 
and calculated the similarities between all pairs of labeled 
walks from different graphs, and then summed them up to get 
the overall similarity between two graphs. To circumvent the 
computational difficulties associated with the marginalized 
kernel, researchers used different ways to approximate the 
marginalized kernel, which resulted in a group of new kernels 
called spectrum kernels [11]. For example, the Tanimoto kernel 
was a spectrum kernel that only considered whether a walk 
existed in a graph and the MinMax Tanimoto kernel took into 
account the frequency of a walk in a graph [9]. Instead of 
comparing labeled walks in graphs, other graph kernels 
methods compared trees [12-13]. Although these kernel 
methods varied in many details, they all produced a kernel 
matrix that showed the similarity between all pairs of instances. 
The kernel matrix could be embedded into kernel-based 
machine-learning methods like Support Vector Machine (SVM) 
[14] to build predictors. It can also be interpreted as a similarity 
matrix and embedded with other machine learning methods like 
nearest neighbor method. 

It the currently study, we developed an innovative graph 
method to represent protein surface based on how amino acid 
residues contact with each other. Then, we implemented a 
shortest-path graph kernel that was originally developed by 
Borgwart and Kriegel [15] to compare the similarity between 
labeled graphs. The shortest-path graph kernel compared all 
pairs shortest-paths between two graphs. It took into account 
edge and vertex labels that were real numbers. The method was 
faster than other graph kernel methods. We embedded the 
resulting kernel matrix into three variants of nearest neighbor 
methods to build predictors. We applied the proposed approach 
to predict enzyme catalytic sites on protein structures. The 
results showed that that the proposed methods were able to 
capture the similarity between enzyme catalytic sites and would 
provide a useful tool for catalytic site prediction. 
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II.   MATERIALS AND METHODS 

Protein dataset and catalytic site residues 

Enzymes and their catalytic sites were downloaded from 
the Catalytic Site Atlas (CSA) [16]. In CSA, enzymes were 
hierarchically organized based on the Enzyme Commission 
(EC) number [17]. There are six groups at the first level of the 
hierarchy, which are EC1 through EC6. We examined the 
number of proteins in each group of the second level. Group 
EC3.4 had the most proteins at the second level. Thus, we 
chose EC3.4 as the dataset to test our method. We used 
program blastclust from the BLAST [18] to remove 
redundancy so that pairwise similarity between proteins was 
less than 30%. In the end, 73 proteins were left. There were a 
total of 201 active catalytic site residues (positive examples) 
and 20,398 non-catalytic site residues (negative examples) in 
these proteins. Position-specific scoring matrix (PSSM) of a 
protein was built by running 4 iterations of PSI-BLAST [18] 
against the NCBI non-redundant (nr) database. In the PSSM, 
each residue position was associated with 20 values. 

Graph representation 

Each example was represented using a graph, which 
included the amino acid residue corresponding to the example 
and the residues that it contacted. Two residues were 
considered contacting if the shortest distance between their 
atoms was less than the sum of the radii of the corresponding 
atoms plus 0.5 Ǻ. In the graph representation, each amino acid 
residue was represented using a node labeled with the 20 PSSM 
values of the residue. An edge was added between two nodes if 
the corresponding residues were contacting. 

Graph kernel 

A shortest-path graph kernel was used to calculate the 
similarity between graphs as in Alvarez et al. [19]. Briefly, the 
first step of the shortest-path kernel was to transform original 
graphs into shortest-path graphs. A shortest-path graph had the 
same nodes as its original graph, and between each pair of 
nodes, there was an edge labeled with the shortest distance 
between the two nodes in the original graph. Then, the shortest-
path graph kernel compared all pairs of walks of length 1 from 
different shortest-path graphs. The comparison of a pair of 
walks included the comparisons of the involved edges and 
vertices. Two vertices were compared using a Gaussian kernel 
as in (1)  
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where 1/22 was set to 72, v and w were two vertices, and 
function labels () returned the labels of a vertex. Two edges 
were compared using a Brownian kernel as in (2) 

|))()(|,0max(),( 2121 eweighteweightceekedge   (2) 

where c was set to 2, e1 and e2 were edges, and function weight() 
returned the weight (or length) of an edge. 

 

Classification methods and leave-one-out cross validation 

We tested three variants of the nearest neighbor method 
(NNM), namely NNM_AVE, NNM_MAX, and NNM_TOP10, 
to build predictors for enzyme catalytic site prediction. For a 
test example, its pairwise similarities to all examples in the 
training set were calculated using the shortest-path graph kernel. 
The three NNMs were defined as follows: (1) Let Ave_pos be 
the average similarity between the test example and all positive 
examples, and Ave_neg be the average similarity between the 
test example and all negative examples. Then, the NNM_AVE 
method predicted the test example to be a catalytic site if 
Ave_pos ≥ Ave_neg, and non-catalytic site otherwise. The 
prediction score for the test example was defined as Ave_pos-
Ave_neg; (2) Let Max_pos be the maximum similarity between 
the test example and all positive examples, and Max_neg be the 
maximum similarity between the test example and all negative 
examples. The NNM_MAX method predicted the test example 
to be a catalytic site if Max_pos ≥ Max_neg, and non-catalytic 
site otherwise. The prediction score for the test example was 
defined as Max_pos-Max_neg; (3) Let Top10_pos be the 
average of the 10 highest similarities between the test example 
and all positive examples, and Top10_neg be the average of the 
10 highest similarities between the test example and all 
negative examples. In the NNM_TOP10 method, the test 
example was predicted to be a catalytic site if Top10_pos ≥ 
Top10_neg, and non-catalytic site otherwise. The prediction 
score for the test example was defined as Top10_pos-
Top10_neg. All the predictors were evaluated using leave-one-
out cross-validation at protein level, so that when an example 
was used as the test example, examples from the same proteins 
were removed from the training set. 

III. RESULTS AND DISCUSSION 

Classification performance 

We extracted catalytic site residues and non-catalytic site 
residues from the proteins and represented each of them using a 
graph. The dataset was extremely unbalanced, with 201 
positive examples and 20,398 negative. To make a better 
evaluation of the methods, we randomly selected 201 non-
catalytic site residues from the negative examples and put them 
with the 201 positive examples to form a balanced dataset. 
Then, we used the shortest-path graph kernel to calculate pair-
wise similarities between graphs. We used three variants of the 
NNM to build predictors for catalytic site prediction. The 
predictors were evaluated using leave-one-out cross validation 
using the balanced dataset. The results (TABLE I) show that 
the three methods achieved comparable accuracy, with 
NNM_AVE being slightly better than the others. The accuracy 
of the NNM_AVE was 77.1%. The NNM_AVE predicted a 
total of 46 false positives. We analyzed the locations of the 
false positives on the protein structures and found that 5 of 
them are contacting with known catalytic site residues. Some 
methods have been published for predicting enzyme catalytic 
sites. The accuracy reported varies over a big range depending 
on the dataset used and other parameters. We have not been 
able to make a direct comparison between our method and 
other methods due to difference in the datasets used.  
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Fig. 1. The rank distribution of positive examples. NNM_AVE was used to 

make prediction. Lower values of rank correspond to higher prediction scores. 

The histogram shows a clear trend that positive examples (i.e., catalytic site 
residues) were enriched in the regions with higher prediction scores.  

TABLE I.  PERFORMANCE FOR PREDICTING ENZYME CATALYTIC SITES 

 TPa FP TN FN Accuracy 

NNM_AVE 155 46 155 46 77.1% 

NNM_MAX 150 64 137 51 71.3% 

NNM_TOP10 156 51 150 45 76.1% 

a. TP: true positive; FP: false positive; TN: true negative; FN: false negative 

Enrichment of positive examples in the high scoring region  

We repeated the leave-one-out cross validation procedure 
on the whole dataset, which included 201 positive and 20,398 
negative examples. Then, for each protein, we sorted the 
examples in the order of decreasing prediction scores. We then 
looked at the ranks of positive examples. The rank of an 
example was defined as the percentage of examples from the 
same protein that had higher scores than it. For example, for a 
given example, if 5% of examples from the same protein had 
higher prediction scores than it, then its rank was 0.05. Good 
predictors should assign higher scores to positive examples 
than to negatives, thus positive examples should have higher 
ranks (which correspond to smaller values for ranks) than 
negative ones. Fig. 1 shows the rank distribution for positive 
examples when NNM_AVE was used. The results revealed a 
clear trend that positive examples are enriched in the regions 
corresponding to high prediction scores. Analysis of results of 
NNM_MAX and NNM_TOP10 revealed the same trend. 

IV. CONCLUSIONS 

In this work, we developed an innovative graph method to 
represent protein surface based on how amino acid residues 
contact with each other. Then, we implemented a shortest-path 
graph kernel method and used it to compute the similarity 
between graphs. We developed three nearest neighbor methods 
to predict enzyme catalytic sites based on the similarity matrix 
that the graph kernel method produced. The predictors were 
able to predict catalytic sites with accuracy up to 77.1%. 
Analysis of the prediction scores showed that positive 
examples had a clear bias towards the high prediction score 
regions. This work showed that the proposed methods were 
able to capture the similarity between enzyme catalytic sites 
and would provide a useful tool for catalytic site prediction. 
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