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Abstract—Systems biology has introduced a number of multi-
scale challenges, which, however, can be tackled by colored Petri
nets, but not by traditional approaches like ordinary differential
equations or Petri nets. In this paper, after a brief covering of
multiscale challenges of systems biology, we report the modeling
and analysis capabilities of colored Petri nets, which Snoopy by
now offers, and describe how these capabilities are used to address
those multiscale challenges. In doing so, we aim to attract more
researchers to use the powerful capabilities of colored Petri nets
to model and analyze multiscale biological systems.

I. INTRODUCTION

Systems Biology [1] is an emerging scientific discipline in
bioscience research, which aims to understand the behavior
of a biological system at the system level by means of
investigating the behavior and interactions of all of the compo-
nents in the system. A large variety of modeling approaches,
e.g., Petri nets, Boolean networks and ordinary differential
equations, have already been applied to modeling a wide field
of biological systems (see [2] for a review). However, all these
approaches do not easily scale, thus they are not ready to model
complex biological systems.

Colored Petri nets [3], [4] are a colored extension of
standard Petri nets, where a group of similar components
are folded into one component, each of which is defined
as and thus distinguished by a color. Colored Petri nets
provide parameterized and compact representations of complex
biological systems; however they do not lose the analysis
capabilities of standard Petri nets, which can still be supported
by automatic unfolding of colored Petri nets to standard Petri
nets. Moreover, another attractive advantage of colored Petri
nets for a biological modeler is that they provide the possibility
to easily increase the size of a model consisting of many
similar subnets only by adding new colors.

While there is a lot of reported work on the application
of different classes of standard Petri nets to a variety of
biochemical networks, see [2], [5] for recent reviews, there
are only a few which take advantage of the additional power
and ease of modeling offered by colored Petri nets, e.g., [6],
[7], [8], for more details see [9]. These studies are rather
small and usually resort to Design/CPN [10] or its successor
CPN Tools [11]. However these tools were not specifically
designed with the requirements of systems biology in mind.

Thus they are not suitable in many aspects, e.g. they do
not directly support stochastic or continuous modeling, nor
stochastic or deterministic simulation.

Moreover, due to the ability to produce data of the same
phenomenon at different scales, modeling of biological sys-
tems shifts from single biological scales to multiple scales
(multiscale modeling) [12]. See Fig. 1 for a diagrammatic
representation of some different biological scales and some
of their hallmark phenomena [13]. Multiscale modeling has
become one of the most important issues in the study of
systems biology. Multiscale systems biology is distinguished
by the following challenges according to [12], [14], [9]:
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Fig. 1. A diagrammatic representation of some biological scales.

1) Repetition of components – for example in the tissue
modeling there may be the need to describe multiple
cells each of which has a similar definition.

2) Variation of components – sets of similar components
with defined variations, e.g. mutants.

3) Organization of components – for example how cells
are organized into regular or irregular patterns over
spatial networks in one, two or three dimensions in
the tissue modeling.

4) Communication between components – for example,
quorum sensing takes place among cell populations
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in one, two or three dimensional space.
5) Movement of components – some components have

the ability to move in a certain region, e.g. molecules
within an individual cell or cells within a tissue.

6) Hierarchical organization of components – enabling
the description of (possibly repeated) components
which contain repeated sub-components. For exam-
ple, in the tissue modeling, tissues contain a number
of cells and cells contain several compartments.

7) Differentiation of components – for example, differ-
entiation of embryonic stem cells or immune cells
makes a less specialized cell more specialized.

8) Replication of components – e.g. cell division.
9) Deletion of components – e.g. cell death.

10) Pattern formation of components – organizing a
number of cells in appropriate one, two or three
dimensional structures in space and time.

All these challenges potentially could be tackled by colored
Petri nets. Our software tool Snoopy [15] builds upon the
lessons learned so far. It has recently been extended by spe-
cific functionalities and features to support editing, animating,
simulating, and analyzing biological models based on colored
qualitative, stochastic and continuous Petri nets [9]. It has been
used to carry out several large case studies, see e.g., [16], [14].

II. COLORED PETRI NETS

Cooperative ligand binding. We first consider an example
of the binding of oxygen to the four subunits of a hemoglobin
heterotetramer, illustrated in Fig. 2 (taken from [17]). The
hemoglobin heterotetramer in the high and low affinity state
binds to none, one, two, three or four oxygen molecules. Each
of the ten states is represented by a place and oxygen feeds into
the transitions that sequentially connect the respective places.

Furthermore, a colored Petri net model of Fig. 2 is illus-
trated in Fig. 3. Each of the five subnets in Fig. 2 is encoded
as a color. A group of similar places (transitions) that are
marked with the same color are represented as a colored place
(transition).

Colored Petri nets. Colored Petri nets consist, as standard
Petri nets, of places, transitions and arcs. Places (represented
as circles) and transitions (represented as boxes) model bio-
chemical species and reactions, respectively. Tokens on places
represent the (discrete) quantities of species, which may be
the number of molecules or the level of concentration of a
species, or simply the presence of, e.g., a gene. Arcs carry
stoichiometric information, called weight or multiplicity.

Additionally, a colored Petri net model is characterized by
a set of color sets. Each place gets assigned a color set and
may contain distinguishable tokens colored with a color of
this color set. For example, in Fig. 3, a color set HbO2 is
defined with five colors and is assigned to places HbO2L and
HbO2H. As there can be several tokens of the same color on
a given place, the tokens on a place define a multiset over the
place’s color set. A particular arrangement of tokens over a net
specifies the current system state (marking). The initial state
is called the initial marking, see 1‘0 for an example in Fig. 3,
where 0 is a color and 1 is the number of tokens of this color.

Each transition gets a guard, which is a Boolean expression
over defined variables, constants, etc. The guard must be
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Fig. 2. Cooperative binding of oxygen to hemoglobin represented as a Petri
net model [17]. For clarity, oxygen is represented in the form of multiple
copies (logical places) of one place, O2. Besides, for the folding purpose, the
whole net is partitioned into five similar subnets. Each group of nodes with
the identical color will be folded into a node in a colored Petri net model.

TABLE I. DECLARATIONS FOR COLORED PETRI NET MODELS OF THE
COOPERATIVE LIGAND BINDING.

Category Declaration

colorset Dot = dot;
colorset HbO2 = int with 0-4;
colorset Level = enum with H, L;
colorset HbLevel = product with HbO2 × Level;
variable x: HbO2;
variable y: Level;
Function HbLevel Fun1(HbO2 x, Level y)

{[y=L]1`(x+1,y)++[y=H]1`(x, y)};
Function HbLevel Fun2(HbO2 x, Level y)

{[y=H]1`(x + 1, y)++[y=L]1`(x, y)};

evaluated to true for the enabling of the transition. The trivial
guard “true” is usually not explicitly given. For example, in
Fig. 3, transitions t1 to t4 have the same guard x <> 4.
Each arc gets assigned an expression; the result type of this
expression is a multiset over the color set of the connected
place. For example, the arc from transition t1 to place HbO2L
has the expression x + 1, which is a multiset over the color
set HbO2.

More compact models. We can further obtain a more
compact colored Petri net model (Fig. 4) by continuing folding
the left and right parts in Fig. 3. Comparing Fig. 3 with Fig. 4,
we can see that we can build colored Petri net model with
different level of structural details, which is especially helpful
for modeling complex biological systems. After automatic

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

25 Huangshan, China, August 23–25, 2013



O2

4

4‘dot Dot

HbO2L1‘0

HbO2

HbO2H

HbO2

t1 [x<>4] t2 [x<>4] t3 [x<>4] t4 [x<>4]

t5

t6

x+1 x x x+1

x x

xx

x+1 x x x+1

Fig. 3. A colored Petri net model for the cooperative binding of oxygen to
hemoglobin, given as a standard Petri net in Fig. 2. See Table I for declarations.

unfolding, these two colored models yield exactly the same
Petri net model as given in Fig. 2, i.e., the colored models and
the uncolored model are equivalent. The declarations for both
colored Petri net models are given in Table I.

O2

4

4‘dot Dot

HbO2
1

1‘(0,L) HbLevel

t1 [x<>4] t2[x<>4]

t3t4

[y=L]1‘(x+1,y)++

[y=H]1‘(x,y)

[y=H]1‘(x+1,y)++

[y=L]1‘(x,y)

[y=H]1‘(x+1,y)++

[y=L]1‘(x,y)

[y=L]1‘(x+1,y)++

[y=H]1‘(x,y)

[y=H]1‘(x,L)

[y=H]1‘(x,y)

[y=L]1‘(x,y)

[y=L]1‘(x,H)

Fig. 4. Another colored Petri net model for the cooperative binding of oxygen
to hemoglobin, given as a standard Petri net in Fig. 2. For declarations, see
Table I.

III. MODELING CAPABILITIES

In Snoopy, we have implemented a colored Petri net
framework that includes colored qualitative and quantitative
(stochastic, continuous, hybrid) Petri nets, which is motivated
by multiscale systems biology. We provide for colored Petri
nets a similar editing environment as for Petri nets; therefore
biologists can easily draw a colored Petri net as usual.

See Fig. 5 for an user modeling interface of Snoopy, which
mainly consists of:

• graphical elements window (the top left tree control):
listing all graphical elements, e.g. node elements and

edge elements,
• hierarchy window (the middle left tree control): show-

ing the model hierarchy,
• declarations window (the bottom left tree control):

containing all declarations, color sets, constants, vari-
ables and functions, for colored Petri nets,

• drawing canvas (the right window): drawing and show-
ing models.

Fig. 5. User modeling interface of Snoopy.

A. Annotation language

Snoopy provides a powerful annotation language for defin-
ing declarations (such as color sets, variables and constants)
that are used for colored Petri nets [18], which offer powerful
and flexible ways to define complex expressions, thus well
supporting biological modeling.

Color sets. The data types used for color set definition
include simple and compound types. The simple types in-
clude dot (only containing one color), int (integer), string,
bool (boolean), enum (enumeration) and index, which can be
directly used for defining color sets, see the color set HbO2 in
Table I for an example. The compound types include product
and union, which, however, have to be based on previously
defined (simple or compound) color sets. For example, the
product color set HbLevel in Table I is based on two simple
color sets: HbO2 and Level.

Subsets of color sets. Snoopy allows to define subsets
based on a defined color set, i.e., using a logic expression
(predicate) to select a group of colors. For example, suppose a
color set CS=int with 1-10, variable x: CS. A subset CS sub
based on CS can be defined using the logic expression x <
5, which selects four colors, 1-4. Subsets of color sets are
very useful in multiscale modeling of biological systems, e.g.,
using them we can model a specific (e.g., circular, rectangular)
mutant area in order to study the effect of a mutant area on
the whole area. See [16] for how to use subsets of color sets
to define a specific geometrical area where Ca2+ channels
function, and [14] for defining a mutant area using them.
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Operators and built-in functions. Snoopy supports rich
operators (arithmetic, comparison, logic and others) and built-
in functions. Arithmetic operators include + (addition), −
(subtraction), ∗ (multiplicity), / (division), % (modulus) and
Comparison operators include = (equal), <> (unequal), <
(less than), <= (less than or equal to), > (greater than),
and >= (greater than or equal to). Logic operators include
& (and), | (or), and ! (not). Other operators are also supported,
e.g., successor (+), predecessor (-), and multiset addition (++).
Besides, several built-in functions are offered, e.g., all(x),
returning all colors of a color set x, and abs(x), returning
the absolute value of a variable x.

User-defined functions. Snoopy also allows user-defined
functions that are used all over in a colored Petri net, e.g.,
in the initial marking definition, arc expressions, or guards.
A user-defined function contains the following components:
function name, parameter list, function body, and return type.

For example, we may define user-defined functions to
replace the lengthy expressions in Fig. 4. Two functions Fun1
and Fun2 are defined, see Fig. 6, which is equivalent to Fig. 4.
See Table I for definitions of these two functions.

O2

4

4‘dot Dot

HbO2
1

1‘(0,L) HbLevel

t1 [x<>4] t2[x<>4]

t3t4

Fun1(x,y)

Fun2(x,y) Fun2(x,y)

Fun1(x,y)

[y=H]1‘(x,L)

[y=H]1‘(x,y)

[y=L]1‘(x,y)

[y=L]1‘(x,H)

Fig. 6. Another colored Petri net model for the cooperative binding of oxygen
to hemoglobin, which uses user-defined functions and is equivalent to Fig. 4.
See Table I for declarations.

Specification of initial marking. Snoopy provides several
ways for specifying initial markings (suppose an enumeration
color set CS with five colors, a-e):

• Specifying colors and their corresponding tokens as
usual, e.g., 2‘a (two tokens of the color a),

• Specifying a set of colors with the same number of
tokens, e.g., 2‘(a,b,c) (two tokens of the colors a, b,
and c, respectively),

• Using a predicate to choose a set of colors and
then specifying the same number of tokens, e.g.,
2‘(x <> c) (two tokens of the colors a, b, e, and
d, respectively),

• Using the all() function to specify for all colors a
specified number of tokens-

• Random generation of initial marking. We first set
the number of tokens to be assigned to places and
then determine the percentage for each place to obtain
those tokens and finally randomly generate the initial
marking. This function is very helpful for randomly
generating the initial distribution of biological species.

B. Modeling support for systems biology

Snoopy considers special support for modeling biological
systems by keeping biologists’ needs and especially those
challenges above in mind.

Multiple modeling formalisms. In order to address dis-
tinctive modeling demands of systems biology, several dis-
tinctive modeling paradigms (i.e., stochastic, continuous, or
hybrid) may be needed. Motivated by this application scenario,
a unifying colored Petri net framework (see Fig. 7) has been
developed and implemented in Snoopy [15], which consists
of colored qualitative Petri nets (QPN C), colored stochastic
Petri nets (SPN C), colored continuous Petri nets (CPN C), and
colored generalized hybrid Petri nets (GHPN C). This allows
us to investigate one and the same case study with different
modeling abstractions in various complementary ways.

For quantitative modeling in systems biology, where rate
functions are often marking-dependent, popular kinetics like
mass action semantics [19] and level semantics [20] are
supported by pre-defined function patterns in Snoopy.

Automatic folding and unfolding. Uncolored Petri nets
and colored Petri nets can be converted into each other
by means of (semi-) automatic or user-guided folding (of
uncolored Petri nets) or automatic unfolding (of colored Petri
nets), see Fig. 8 for an example. Moving between the colored
and uncolored level changes the style of representation, but
does not change the actual net structure of the underlying
reaction network. Therefore, all analysis techniques available
for uncolored Petri nets can be applied to colored Petri nets
as well.
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Fig. 7. A colored Petri net framework, adapted from [15].

Folding. Folding a Petri net means grouping several similar
subnets and then overlay them, which we also call colorizing.
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Folding can be realized manually or automatically. Although
automatic folding is usually attractive, to find similar subnets
from a net for a given subnet (pattern) involves a subgraph
isomorphism problem, which is NP-complete [21]. In Snoopy,
we do not address the automatic folding based on subgraph
isomorphism. Rather we consider some special scenarios. For
example, 1) Colorizing any subset. Snoopy allows the user
to select a subnet and then automatically color it with a
given color set. As a result, all places have the same color
set and all arcs the same expressions. This, in fact, just
alleviates the coloring work. 2) Colorizing master Petri nets.
The network reconstruction problem [22] aims to find a fitting
model, e.g., a Petri net model, from given experimental data by
considering all possible models (called master Petri nets). For
this, colored Petri nets are used to model all possible networks
by considering each possibility as a color.
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Fig. 8. Three folding and unfolding cases [23].

Unfolding. The key challenge when unfolding colored Petri
nets is the computation of all transition instances, which in
fact is a combinatorial problem, suffering from combinatorial
explosion. For overcoming this, a constraint satisfaction ap-
proach has been employed. Specifically, the efficient search
strategies of Gecode [24] has been used to greatly improve
the unfolding efficiency of colored Petri nets. Besides, multi-
threads are supported to further accelerate the unfolding. See
[9] for details. For example, for the PCP model given in [14]
the colored Petri net model for a 40*40 grid results in an
uncolored model of 173,600 places and 234,248 transitions,
the unfolding time being only about two minutes. See [14] for
more experimental results.

Hierarchical modeling. Snoopy supports hierarchical
color sets, i.e., a color set may consist of a hierarchy of L
levels, and the number of colors in the color set of a level is
given by the product of the number of underlying colors in
the color set tuple from the next level. Theoretically, at each
level, the size of the obtained net can be decreased to 1/2 of
the net in the lower level. Thus using a color set of L levels,
the size of the obtained net can be of 1/2L of the original net.

For example, compare Fig. 2, Fig. 3, and Fig. 4. The color
sets of Fig. 3 has a hierarchy of one level, while the color
set HbLevel in Fig. 6 has a hierarchy of two levels. We can
see that using color sets of more levels makes a net more
compact. A large colored Petri net model of the phenomenon
of Planar Cell Polarity (PCP) signaling in Drosophila wing is
given in [14], which has a hierarchy of three levels: wing, cell

and compartment. See also [16] for hierarchical modeling of
coupled Ca2+ channels.

C. How to address multiscale challenges using colored Petri
nets

For the first challenge, repetition of components, we can
define each similar component as a color of a color set standing
for the set of similar components, thus substantially decreasing
the size of a large biological model. For example, each cell
(or Ca2+) is encoded as a color in [14] (or [16]).

In order to model variations, e.g., mutation, of com-
ponents, we can encode mutant components like cells as
colors and differentiate mutant and normal components using
different colors. See e.g., [14], where a variety of genetic
mutations that are placed in different clone shapes (rectangular,
circular, elliptical) are studied.

Using hierarchical color sets, (hierarchical) organization
of components can be easily represented, where each level of
organization is described by a product color set. See e.g., [14]
where two levels, tissues and cells, are considered, and [16]
where two levels, Ca2+ clusters and Ca2+, are modeled.

The communication between components, e.g., the quo-
rum sensing, may be converted into the problem of information
exchange between colors, each color denoting a component.

Likewise, the movement of a component from one po-
sition to another means to change the color representing the
old position to that representing the new position. See e.g., the
diffusion model in [25], where the species may move from one
grid cell to another in a two-dimensional grid.

For the differentiation of a component, each of the
different stages of the component is encoded as a color. See
e.g., the phase variation in bacterial colony growth in [25],
where cells division is considered.

Besides, the replication or death of a component can be
modeled as that a new color is created in a color set or a color
is removed from the color set, respectively. See [9] for more
details.

IV. ANALYSIS CAPABILITIES

Petri net theory offers a rich body of analysis techniques,
which can also be used for colored Petri nets. In this section,
we will briefly describe some with the focus on how to use
them for colored Petri nets with the tools, Snoopy and its
friends, Charlie [26], Marcie [27] and MC2 tool [28], see
Fig. 9.

Behavioral and structural properties. Petri net theory
offers a set of behavioral and structural properties. The gen-
eral behavioral properties include boundedness, liveness, and
reversibility. Structural properties can be further classified as
elementary graph properties like connectedness, siphons/traps,
and place/transition invariants [20]. These properties are usu-
ally used as preliminary checks of Petri nets.

In order to use these properties to analyze a colored
Petri net, we can automatically unfold the colored net to an
uncolored Petri net, which is then fed into Charlie to obtain
analysis results.
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Fig. 9. Analysis capabilities for colored Petri nets offered by Snoopy and
its friends.

Animation. Colored Petri nets can be animated in Snoopy,
so we can execute a colored Petri net by playing the token
game to experience the net behavior [18]. For colored quali-
tative Petri nets, time-free animation is provided. For colored
stochastic Petri nets, time-dependent animation is available,
which means that an automatic animation corresponds to a
stochastic simulation run.

Besides, we can choose automatic animation or manually
trigger a transition instance from all the enabled transition
instances, which are automatically computed.

Simulation. Simulation has been implemented for colored
quantitative (stochastic/continuous/hybrid) Petri nets, which is
done on automatically unfolded uncolored Petri nets.

For colored stochastic Petri nets, the Gillespie stochastic
simulation algorithm (SSA) [29] has been implemented in
Snoopy.

Continuous simulation, implemented in Snoopy [15], has
so far 14 different stiff/unstiff ODE integrators, which are used
to integrate the ODEs induced by a continuous Petri net model

In hybrid simulation of Snoopy, SSA is implemented
to simulate stochastic transitions, and 14 integrators, as are
provided for continuous simulation, are used to integrate the
ODEs induced by the continuous transitions. Hybrid simulation
can be done with a static or dynamic partitioning scheme.

Model checking. If the state space is finite and of man-
ageable magnitude, analytical model checking can be used
to analyze a Petri net model, otherwise simulative model
checking may help to obtain an approximative answer.

In order to use analytical model checking for a colored
Petri net, we have to first export it to an uncolored Petri net,
which is then read by Marcie to obtain analysis results. But for
simulative model checking, we either use Marcie again or we
only need Snoopy’s simulation traces, which are fed to MC2
tool to obtain analysis results.

V. APPLICATIONS

Snoopy’s colored Petri nets have been applied to investigate
a variety of large-scale biological systems, proving its capabil-
ity to solve many challenges imposed by multiscale systems
biology.

For example, the PCP model [14] includes the repetition of
components in a two-level hierarchy of different geometries.
In the higher inter-cellular level, cells are located in a rectan-
gular honeycomb grid, representing the epithelium tissue, and
the lower level is the intra-cellular organization represented
by virtual compartments within one cell in a circular grid.
Moreover variations among cells are modeled in the form of
patches of mutant cells which lack a specific signaling protein.

In [30], a colored Petri net model is built for the phase
variation in bacterial colony growth, where cells divide indi-
vidually and explicitly consider spreading in space. The issues
highlighted in this example include multiple scales (from
individual level to colony level), mutation with cell division,
mobility of cells, and 2D pattern formation.

In [16], colored Petri net models are developed for de-
scribing spatially arranged clusters of Ca2+ channels, which
involves hierarchical organization of channels, i.e., clusters are
arranged in a two-dimensional lattice, and channels are ar-
ranged in another two-dimensional sub-lattice in each element
of the cluster lattice.

In [31], colored stochastic Petri nets are used to model
stochastic membrane systems with active membranes, where
dynamic color sets for representing active membranes are
discussed.

More applications can be found,e.g., in [9], [25].

VI. CONCLUSION

Systems biology has brought a number of multiscale chal-
lenges, which, however, are hard to be solved by standard
modeling approaches like ODEs and Petri nets, but colored
Petri nets do. By keeping these challenges in mind, we
developed a colored Petri net framework and implemented it
in our modeling tool, Snoopy.

In this paper, we reported the modeling and analysis
capabilities that Snoopy now offers and described how these
capabilities are used to address those multiscale challenges. So
far we have not found other comparable tools.

By now, Snoopy has been applied to modeling and analyz-
ing several large case studies that exhibit multiscale challenges.
We are continuing to find out more multiscale challenges and
to implement more capabilities to address them.
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