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Abstract—Since the existing experimental techniques for 
identifying protein-protein interactions (PPIs) are expensive and 
time-consuming, and the results are incomplete and/or noisy, 
developing computational methods for effectively predicting 
PPIs is of great importance. Therefore, we develop the R 
package ppiPre, which predicts PPIs using heterogeneous data 
sources, including Gene Ontology (GO) annotations, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
annotations and topological properties of the PPI network. 
ppiPre supports up to 20 species and provides useful functions 
for predicting PPIs and calculating semantic and topological 
similarities between proteins. ppiPre is open source and freely 
available from http://cran.r-project.org/web/packages/ppiPre). 

Keywords—protein-protein interactions; prediction; semantic 
similarity; network topology; R 

I.  INTRODUCTION 
Protein-protein interactions (PPIs) are critical for most 

cellular processes. High-throughput methods such as Y2H 
[1][2] and TAP-MS [3] have produced enormous PPI data for 
several organisms [4] in recent years. However, data 
generated from these experiments are often erroneous. Thus, 
computational methods can be very useful for validating 
experimental data or for choosing potential targets for further 
small-scale experimental screening. Researchers have 
suggested that direct data on protein interactions can be 
combined with indirect data in a supervised learning 
framework such as support vector machine (SVM), random 
forest and other classifiers [5][6][7][8][9], and that integrating 
heterogeneous data sources can improve the result of PPIs 
prediction [10][11] . 

Supervised learning aims at training a classifier using 
positive and negative examples (truly interacting and non-
interacting protein pairs) to filter false positive interactions 
and to discover false negative interactions in the PPI data. 
Features used in the training process may be extracted from 
different kinds of biological evidences, including protein 
sequences [10][12], GO [13][14], co-expressed pairs [10], 
domain compositions [15], motif pairs and related mRNA 
expression [16]. These approaches use similar classification 
framework to integrate heterogeneous data sources, while they 
mainly differed in two issues: the set of features used for 
prediction, and the learning method employed. 

Since biological similarities mentioned above don’t work 
well for the poorly studied organisms or proteins, topological 
similarities based solely on PPI network structure should also 
be integrated into the prediction framework [17].  

Several software tools have been developed for the 
prediction of PPIs[18][19][20][21][22][23]. These tools use 
different kinds of features including literature, protein 
sequences, interaction domain, functional annotation, gene 
expression, and genome context. Generally, these existing 
tools have two major disadvantages. First, the species 
supported are limited. Well studied model organisms such as 
yeast and human are often supported, while some organisms 
which are lack of research are not. Second, additional data are 
often required while using these tools, such as homologous 
interactions, protein sequence, expression profiles and protein 
domains. 

In this paper we present an R package named ppiPre to 
predict PPIs from the PPI networks given by users and 
calculate similarity between two proteins. We chose R 
because it is open source and there already exist packages to 
handle biological data and graphs [24]. ppiPre uses a 
combination of data sources, including Gene Ontology 
annotations, KEGG pathway annotations and topological 
properties of the network. Twenty species are supported by 
the current version of ppiPre, and the package only need 
original PPI network as input. 

II. METHODS 
In ppiPre, three types of features are integrated, which are 

semantic similarities based on GO, similarity based on KEGG 
co-pathway membership and similarities based solely on PPI 
network topology. 

A. Semantic similarities based on GO 
Semantic similarities are useful to assess the functional 

relevance of proteins. The GO is one of the most widely used 
knowledge source in bioinformatics, and has become the de 
facto standard for the annotation of proteins. The GO 
annotates proteins with terms from three ontologies: 
Molecular function (MF), biological process (BP), and 
cellular component (CC). Ontologies are organized as directed 
acyclic graphs (DAGs). Proteins that interact in the cell are 
likely to be in similar locations or involved in similar 
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biological processes compared to proteins that do not interact. 
Thus the more semantically similar the gene function 
annotations are among the interacting proteins, more likely 
the interaction is reliable. Several metrics have been proposed 
to measure the semantic similarity between GO annotations, 
and have been verified in terms of the correlations with other 
biological evidences such as sequence similarity and protein 
structure [27][28][29][30]. These measures often involve the 
information content (IC) of GO aspects or the GO graph 
structure. 

The IC-based similarity measures depend on the 
frequencies of two GO terms involved. The IC of a term can 
be quantified in terms of the probability of its occurrence and 
gives a measure of how specific and informative a term is. It 
is defined as follows:  

                              ( ) ( )( )=-logIC t p t                              (1) 

where p(t) is the number of proteins annotated to term t and its 
descendants divided by the total number of proteins annotated 
to GO. Two newly published IC-based semantic similarity 
measures, namely IntelliGO [30] and Topological Clustering 
Semantic Similarity (TCSS) [31], are integrated in ppiPre. 

The IntelliGO similarity measure integrates 
complementary properties in a novel annotation vector space 
model representation of protein annotations with coefficients 
based on both IC and annotation origin through evidence 
codes which trace the procedure that was used to assign 
specific GO terms to given proteins [32]. The coefficients 
assigned to each GO term are composed of two measures. A 
weight w(g, t) is assigned to the evidence code that qualifies 
the importance of the association between a GO term t and a 
protein g. The Inverse Annotation Frequency (IAF) measure is 
defined as the ratio between the total number of proteins and 
the number of proteins annotated by the term t. The 
coefficient αt is defined as 

                                   
( ) ( ), t w g t IAF tα = ∗                          (2) 

The IntelliGO semantic similarity measure between two 
proteins g and h represented by their vectors g



and h


is given 
by the following formula: 
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. LCA is the lowest  common ancestor of 
the two terms. MinSPL is the minimal shortest path length 
between the two terms passing through this LCA. 

The TCSS algorithm considers unequal depth of biological 
knowledge representation in different branches of the GO 
DAG. The main idea of TCSS is to divide the GO DAG into 
sub-graphs defining similar concept and score a PPI higher if 
participating proteins belong to the same sub-graph. 

In the first step, sub-graphs are defined based on a 
threshold on the IC of all terms. Terms below a previously 
defined cutoff of IC are selected as sub-graph roots. And two 
sub-graphs are merged to increase the dissimilarity between 
sub-graphs if their roots have similar IC values. GO terms 
often have multiple parents, which could result in overlapping 
sub-graphs. Sub-graph overlap is then removed in two ways. 
Edges are removed by transitive reduction of GO graph G, 
which results in the smallest graph R(G) such that the 
transitive closure of G is same as the transitive closure of 
R(G). Terms that still belong to more than one sub-graph after 
edge reduction are replicated in each sub-graph, as well as the 
descendants of the terms. Semantic similarity between two 
terms is calculated within a sub-graph instead of the complete 
GO DAG. After the first step, all sub-graphs are connected to 
construct a meta-graph.  

The second step is normalized scoring. Semantic 
similarity is scored on the meta-graph to get more balanced 
semantic similarity scores compared to on the complete GO 
DAG. 

The annotation information content (ICA) of term t is 
calculated based on the frequency of gene products annotated 
to t and its children and is defined as follows: 
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where t is a term in the ontology O and Pt is the set of gene 
products annotated to t. N(t) is the set of child terms of t. 

For a term s
it belonging to the ith sub-graph s

iG , the sub-
graph information content (ICS) of ti is defined as follows: 
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For a term m
it  in meta-graph Gm, the information content 

(ICM) is defined as follows: 

                    
( ) ( )

( )max
m m
i

m
im

i m
i

t G

ICA t
ICM t

ICA t
∈

=                            (7) 

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

334 Xi’an, China, August 18–20, 2012



The semantic similarity between proteins A and B is 
defined by the maximum approach: 

( )( )
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where S and T are the sets of GO terms annotated to proteins 
A and B respectively. LCA(si,tj) is the lowest common 
ancestor of the terms si and tj. 

Besides two IC-based measures, one well-known graph-
based measure presented by Wang [33] is integrated in the 
prediction framework. 

In Wang’s measure, each edge in the GO DAG is given a 
weight according to its type (“is-a” or “part-of”). For a term t, 
a sub-DAG comprised of the term t and all its ancestors can 
be represented as DAGt = (t,Tt,Et), where Tt is the ancestors of 
term t and Et is the set of edges connecting to the terms in 
DAGt. For a term n in DAGt, the semantic contribution of n to 
t, St(n), is the product of all the edge weights in the path which 
has the maximum product among all the paths from term n to t. 

The semantic similarity between two terms i and j is 
calculated as follows: 

                 ( )
( ) ( )

( ) ( )

+
, =

+
i j

i j
t T T

Wang

S t S t
Sim i j

SV i SV j
∈ ∩
∑

               (9) 

where SV(x) is the total semantic contribution of the term x in 
DAGx. 

The semantic similarity between two proteins A and B is 
the maximum semantic similarity between any of the terms in 
GO term sets GOA and GOB that annotate A and B. 

B. Similarity based on KEGG co-pathway membership  
KEGG contains graphical representations of cellular 

processes. If two proteins have at least one shared KEGG 
pathway membership, the interaction between them is 
considered to be reliable. The similarity is defined in the form 
of Jaccard similarity [34]: 

                          ( ) ( ) ( )
( ) ( )

,KEGG

P x P y
Sim x y

P x P y
∩

=
∪

                       (10) 

where P(x) is the pathways that protein x is annotated to in 
KEGG. 

C. Similarities based on network topology 
For the prediction framework to work well on the proteins 

which are not well annotated in GO and/or KEGG, especially 
the proteins of poorly studied organisms, three similarity 
measures based solely on network structure are also integrated 
into the prediction framework of ppiPre. 

The classical Jaccard similarity is defined as: 

                 ( ) ( ) ( )
( ) ( )

,Jac

N x N y
Sim x y

N x N y
∩

=
∪

                      (11) 

where N(x) denotes the set of direct neighbors of node x. 

Adamic-Adar similarity [35] assigns the less connected 
neighbors more weights, and is defined as: 

                      ( )
( ) ( )

1,
logAA

z N x N y z

Sim x y
k∈ ∩

= ∑                   (12) 

where kz is the degree of node z. 

Resource Allocation similarity [36] is motivated by the 
resource allocation dynamics on complex networks [37]. The 
common neighbors of two nodes in a network play the role of 
transmitters, which will equally distribute a unit of resource to 
all its neighbors. The similarity between node x and y can be 
defined as the amount of resource y received from x, which is 

                 ( )
( ) ( )

1,RA
z N x N y z

Sim x y
k∈ ∩

= ∑                        (13) 

D. Implementation and Usage 
At present, ppiPre supports twenty species, which are 

Human, Yeast, Fly, Worm, Mouse, Arabidopsis, Rat, 
Zebrafish, Bovine, Canine, Anopheles, E.coli strain Sakai, 
Chicken, Chimp, Malaria, Rhesus, Pig, Streptomyces 
coelicolor, Xenopus and E.coli strain K-12. The IC used in 
ppiPre is species specific and calculated from corresponding 
Bioconductor annotation packages org.Hs.eg.db, 
org.Sc.sgd.db, org.Dm.eg.db, org.Ce.eg.db, org.Mm.eg.db, 
org.At.tair.db,  org.Rn.eg.db, org.Dr.eg.db, org.Bt.eg.db, 
org.Cf.eg.db, org.Ag.eg.db, org.EcSakai.eg.db, org.Gg.eg.db, 
org.Pt.eg.db, org.Pf.plasmo.db, org.Mmu.eg.db, org.Sco.eg.db, 
org.Ss.eg.db, org.Xl.eg.db and org.EcK12.eg.db. 

Annotation packages GO.db and KEGG.db are used to 
obtain the relations of GO terms and the number of shared 
pathway of two proteins. The igraph software package is used 
to calculate topological similarities. 

Besides the features, the classifier is of great significant in 
a prediction framework. The ppiPre package chose the 
classical SVM [38] to combine heterogeneous features. The 
function svm() provided by the package e1071 offers an 
interface to the LIBSVM library [39] and is used to train a 
SVM. SVM is chosen because it is able to handle small 
training set. Some other classifiers including random forest 
and bayesian classifier have also been tested during the 
development of ppiPre, but their performances were inferior 
to that using the SVM. 

The prediction framework is shown in Figure 1. First, 
SVM is trained using the gold-standard PPI data sets (solid 
arrows). Then the trained classifier can predict PPIs from the 
PPI networks given by users (hollow arrows). 

Functions for predicting PPIs and calculating similarities 
are provided within ppiPre. 

The function SVMPredict reads the training set from an 
input file, computes the features for the training set, trains the 
SVM classifier, and predicts the false interactions from PPIs 
given by user. 
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Figure 1. Graphical overview of the prediction framework. 
 

For example: 

>SVMPredict(trainingset, predictingset, organism= 
"human") 

The training set is a comma separated values (CSV) file, 
each line of which is made up of three columns which are 
names of two proteins and a label. The label is either 1 or 0, 
indicating that the two proteins are interacting or not. The 
format of the predicting set is the same as training set. For 
yeast, ORF IDs from Saccharomyces Genome Database (SGD) 
are needed as the names of proteins, while Entrez Gene IDs 
are needed for other species. The result including potential 
false interactions will be written to a file. 

The function FNPre predicts the false negative 
interactions according to three topological similarities as 
described before. User can predict new PPIs based on one or 
more topological similarities. A given threshold is the ratio of 
false negative interactions to positive interactions in the 
network, which controls the number of false negative 
interactions to be discovered. The result is also saved in a 
CSV file. 

For example: 

>FNPre(file="sample.csv",indicator=c("RA","AA"),thresh
old=0.1, output="FNPreResul.csv) 

The indicator can be any combination of "RA", "AA", and 
"Jaccard", which indicates the similarities used. 

The functions KEGGSim, WangGeneSim, TCSSGeneSim 
and IntelliGOGeneSim compute the corresponding semantic 
similarity between two proteins.  

The function GOKEGGSims and GOKEGGSimsFromFile 
compute the semantic similarities between two proteins or 
protein pairs stored in a CSV file. The result consists of one 
KEGG-based and nine GO-based semantic similarities which 
are calculated by three methods on three GO ontologies. 

The functions JaccardSim, AASim, RASim and 
TopologicSims compute the corresponding topological 
similarity or all of the three similarities between two proteins. 

The function ComputeAllEvidences reads interactions 
from a file which contains interactions and compute both 
biological and topological features of each interaction.  

Functional R scripts for all the functions are provided 
within the package. 

III. RESULTS AND DISCUSSION 
Two commonly used yeast gold-standard data sets, the 

Munich Information Center for Protein Sequences (MIPS) 

data set [40] and the binary gold-standard data set [41], have 
been tested using ppiPre. Self-interactions are eliminated 
since the similarity measures are not appropriate in this case. 
Table 1 shows the detail of the gold-standard data sets. As 
negative examples we select random, non-interacting pairs 
from the interacting proteins, while maintaining the degree of 
each protein in the PPI network. The number of negative 
examples was taken as equal to the number of positive 
examples. 

Table 1. Gold-standard positive yeast protein interaction data sets 

Data set 
No. of  
Interactions 

No. of  
Proteins 

Interaction 
 Type 

MIPS 8250 871 co-complex 
Yu 1263 1078 binary 
Although the similarity measures that depend on GO or 

KEGG cannot work well with proteins with unknown 
annotations, the effect on the two data sets above can be 
ignored because interactions which are lack of annotations 
account for only 0.2% (16 in MIPS data set and 2 in binary 
data set). However, when studying PPIs of poorly annotated 
species, the effect of lacking of annotations must be taken into 
account. 

The performance of ppiPre is studied using 10-fold cross 
validation. Of the MIPS data set, over 98% of the true positive 
interactions can be classified correctly. Of the binary data set, 
since the network is very sparse, about 81% of the true 
positive interactions can be classified correctly. The result 
shows that ppiPre is capable of handling both large and small 
PPI data. 

IV. CONCLUSIONS 
In this paper, an R package ppiPre for predicting PPIs is 

introduced. The PPIs prediction problem is formalized as a 
binary classification problem, and seven similarities based on 
heterogeneous sources are integrated in the classification 
framework, including one similarity based on KEGG co-
pathway membership, three similarities based on GO 
annotation and three similarities based solely on topology of 
PPI network. The package works well on predicting PPIs 
from both large and small PPI networks.  

At present, ppiPre supports twenty species. In future work, 
we plan to integrate new effective features and improve 
efficiency of the algorithms. 
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