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Abstract—The study of gene regulatory network (GRN) and
protein protein interaction network (PPI) is believed to be
fundamental to the understanding of molecular processes and
functions in system biology and therefore, attracted more and
more attentions in past few years. However, there is little focus
about network construction in single nucleotide polymorphism
(SNP) level, which may provide a direct insight into muta-
tions among individuals, potentially leading to new pathogenesis
discovery and diagnostics. In this paper, we present a novel
method to mine, model and evaluate a SNP sub-network from
SNP-SNP interactions. Specifically, based on logistic regression
between two SNPs, we first construct a genome-wide SNP-SNP
interaction network. Then by using gene information, selected
SNP seeds are employed to detect SNP sub-networks with a
maximal modularity. Finally to identify functional role of each
SNP sub-network, its gene association network is constructed
and their functional similarity values are calculated to show the
biological relevance. Results show that our method is effective in
SNP sub-network extraction and gene function prediction.

I. INTRODUCTION

Rapid advancements in gene regulatory network (GRN) and
protein-protein interaction (PPI) network make the putative
functional connections hidden among genetic codes previously
appear in front of us intuitively and orderly [1], [2]. In the
post-genomic era, more and more attempts are being made to
a system level understanding of biological organisms, which
is viewed as an integrated and interacting network of genes,
proteins and biochemical reactions which give rise to life [3].
Fruitful works [4], [5], [6], [7], [8], [9], [10], [11] provide
us a better understanding of the structure and dynamics of
cellular and organismal function from an integrating point of
view. In this work, we construct a functional network at single
nucleotide polymorphism (SNP) level, and conduct a system-
wide association analysis of the SNP sub-networks, which may
provide a new perspective into pathogenetic mechanisms of
complex diseases.

SNP is a DNA sequence variation occurring when a single
nucleotide - A, C, G, or T - differs at the same position
between individuals [12]. SNPs are believed to result in differ-
ences between individuals, such as susceptibility to diseases
[13]. They are considered as the most abundant and invaluable

markers in human genome, that is a potential powerful tool for
both of genetic researches and applications in practice [14],
[15]. It has been observed that SNPs seldom act as simple
functions to a single gene locus while performing multiple
interactions and inheritance together.

Studying the functionality of SNP is of particular interest
due to high data volume and the complexity of interactions.
A variety of computational approaches have been developed
and implemented for selecting a cohort of SNPs. One kind
of them aims to identify a subset of SNPs that are assumed
to independently have effect on a genotype decision. Horne
and Camp [16] applied principal component analysis to eval-
uate multivariate SNP correlations to infer groups of SNPs
in linkage disequilibrium (LD) and to establish an optimal
set of group-tagging SNPs during an informative associa-
tion analysis. Recently, a new integrative scoring system for
prioritizing SNPs based on their possible deleterious effects
within a probabilistic framework is proposed [17]. A new
multi-objective optimization framework based on the notion
of Pareto optimality for identifying SNPs that are both infor-
mative tagging and have functional significance is successfully
applied for lung cancer study [18].

Another kind of those approaches is based on pairwise
associations of SNPs. This approach is to select a set of SNP
pairs such that each of them is highly interacted with the other.
Schwender and Ickstadt [19] employed logic regression to
identify SNP interactions explanatory for the disease status in
case-control study, and proposed two measures for quantifying
the importance of these interactions for classification. A global
partitioning based on pairwise associations of SNPs is defined
by Katanforoush et al. [20], and the pairwise allelic association
of SNPs selected can describe various features of genomic
variation, in particular for recombination in the hotspots re-
gions. Wan et al. [21] proposed a novel learning approach
(SNPRuler) based on the predictive rule inference to find
disease-associated epistatic interactions. Liu et al. [22] applied
a shrunken methodology to genome-wide SNP selection and
based on the pairwise SNP-SNP interaction values to construct
SNP networks.
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In this paper, we first construct SNP networks based on their
interactions, and then identify SNP-SNP interaction modules
or sub-networks for functional analysis. A gene association
network with each SNP sub-network is further constructed
through the corresponding gene functionalities and regulatory
relationships to identify the functional roles of SNP sub-
networks. Specifically, genes whose SNPs located in the same
sub-network are extracted and their pairwise similarity values
are computed based on the literature vocabularies, i.e., Gene
Ontology (GO) terms [23]. Gene pairs that have a similarity
value larger than a defined threshold will be considered as
highly functionally similar and will be connected in the
gene association sub-network. Clearly in such a manner, it
may bring us into a new perspective about gene network
construction. Based on this study, we can make a relationship
between SNPs and genes in systems biology perspective.

The rest of the paper is organized as follows: In “Methods"
section, our network identification and computational model-
ing for SNPs networks are discussed. In “Results" section,
we present experimental results to show how to construct
SNPs networks and their gene association networks, and also
demonstrate the effectiveness on analysis of complex diseases.
In “Discussion" section, some concluding remarks are given.

II. METHODS

A. SNP-SNP Interactions

As we deal with data sets that have disease-trait samples,
we consider to test epistasis using PLINK to detect SNP-SNP
interactions (http://pngu.mgh.harvard.edu/purcell/plink) [24],
whose focus is purely on whole genome association analysis
of genotype/phenotype data. All pairwise combinations of
SNPs can be tested, although this may not be desirable in
statistical terms, it is computationally feasible for moderate
datasets using PLINK. Input SNPs can be tested using a
logistic regression model, which is based on allele dosage for
each SNP, A and B, and fits the model in the form of

Y ∼ b0 + b1.A + b2.B + b3.AB + e (1)

The test for interaction is based on the coefficient of b3,
therefore we only considers allelic by allelic epistasis. We
note in PLINK software that there is another fast algorithm
called fast-epistasis which use collapsed 2-by-2 contingency
table, and the computation can be greatly accelerated.

B. Network Structure Analysis

To better interpret and analyze available SNP-SNP interac-
tions information, we construct and study a genome-wide SNP
network. The network is represented as an un-directed, un-
weighted graph with each SNP as a node and each SNP-SNP
interaction as an edge. If two SNPs are significantly interacted
with each other under a predefined threshold, there will be an
edge connecting between these two SNPs, otherwise not.

As a genome-wide SNP network is huge, it is better to find
interesting sub-networks or functional modules for analysis.
Detecting densely connected regions within themselves but
sparsely connected with the rest of the network therefore play

a vital role in revealing important principles of cellular organi-
zation and function. Here our goal is to find a group of SNPs
in a sub-network sharing the common cellular interactions and
responsible for certain genetic functions or pathways.

Suppose the genome-wide SNP network is denoted by G =
{V,E}, where V = {v1, v2, ..., vj} is set of vertices and E =
{eij} is the set of edges. In our study, V is a set of unique
SNPs and an edge eij is defined as a pair of vertices (vi, vj)
denoting the direct connection between vertex vi and vj , i.e.,
there is an interaction between the ith SNP and the jth SNP.
We denote A to be the adjacent matrix of G. If V1 and V2 are
two disjoint node subsets of V , we further define

L(V1, V2) =
∑

i∈V1

∑

j∈V2

Aij .

For a given sub-network G, it contains both the node set and
the edge set.

The goal of this work here is to address about the sub-
network for a given SNP. We are motivated by two factors.
Firstly, due to the complexity and modularity of SNP net-
works, it is more feasible computationally to study a sub-
network containing a small number of SNPs of interest.
Secondly, sometimes the whole structure of the network may
not be our primary concern. Rather, we may be more interested
in finding the sub-network which contains a set of related
SNPs (a set of related corresponding genes) of interest.

Our aim is to discover sub-networks such that SNPs inside
the sub-network interact significantly and, meanwhile, they
are not strongly influenced by SNPs outside the sub-network.
Sub-networks are constructed starting with seeds consisting
of one or more SNPs believed to be participated in a viable
sub-network. For instance, seeds are the suspected SNPs that
are related to a particular disease. The sub-network iteratively
keeps its compaction by evaluating connectivity degree of
each node in the remaining whole network, this node will
be adjoined the sub-network if it is influenced more by inside
than by outside and will be abandoned otherwise. A literature
search is carried out in “Gene" database of NCBI with a
search phrase of this particular disease name. Genes that have
genotype data will be further filtered out. Then, genes will
be manually annotated and we select some of them that have
a clear relationship descriptions with diseases. An individual
list of SNPs corresponding to each of these selected genes are
downloaded and checked about overlaps with our own data
set. For each gene, we pick out one or more SNPs that have a
comparable larger connections with others as the seeds. Even
through this list is probably not a complete one, it provides a
good reference related to this particular disease.

In our algorithm, the sub-network detection is based on
the modularity optimization. A sub-network is initiated by
seeds and it keeps growing based on the maximization of a
modularity calculation [25] shown as follows:

d(Gi) =
L(Vi, Vi) − L(Vi, V i)

|Vi|
(2)

The sub-network detection procedure iteratively adds one more
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vertex with the highest d value from all neighbors of existing
sub-network. The initial sub-network in our method is a dense
region constituting with all seeds. It is considered as the origin
or the core, that can expand itself to get the greatest density of
a community finally. We remark that a breadth-first spreading
procedure is done during our method. Breadth-first search can
find shortest paths from a single vertex vi to all others in time
O(m). The spreading area is defined as all neighbors of the
existing sub-network. For every vertex vi in spreading area,
we compute its d value, and this vertex will be admitted as one
member of this sub-network if its d value is the highest among
all neighborhoods and otherwise not. A detailed description is
shown in Table I.

TABLE I
ALGORITHM DESCRIPTION.

Input: G(V, E) is the whole graph with vertex set V and edge set E,
G

′
(V

′
, E

′
) is the sub-graph with vertex set V

′
and edge set E

′
.

S = {s1, s2, ..., sn} is the seed set.
1 G

′
:= S

2 for ∀vi ∈ G, vi ̸∈ G
′
, if ∃vj ∈ G

′
that Aij = 1

3 dvi =
L(V

′ ∪vi,V
′ ∪vi)−L(V

′ ∪vi,V −V
′ ∪vi)∣∣V

′
∣∣+1

4 where L(V
′
, V

′′
) =

∑
i∈V

′
∑

j∈V
′′ Aij

5 and A is adjacent matrix of G
6 end for
7 V

′
= V

′ ∪ vi where dvi = dmax

8 Until dvi < dmax

III. EXPERIMENTAL RESULTS

A. Datasets

The Parkinson disease (PD) SNPs data is based on a
genome-wide genotyping of 270 individuals with idiopathic
Parkinson Disease cases (case) and 271 neurologically normal
controls (control) downloaded from the Coriell Institute for
Medical Research. The genotyping was performed using the
Illumina Infinium I and Infinium II assays. The Illumina In-
finium I assay asseses 109,365 unique gene-centric SNPs while
the Infinium II assay assesses 317,511 haplotype taggings
SNPs based upon Phase I of the International HapMap Project.
The Illumina Infinium I and II assays share 18,073 SNPs in
common. Therefore, the combination of the two assays after
preprocessing represents 408,787 unique SNPs. A frequency
and genotyping pruning was done before experiment by using
PLINK [24]. After frequency and genotyping pruning, there
are 377,833 SNPs.

As we focused on coding SNPs which cause a functional
impact on the genes in this study, SNPs that are located in the
gene area were filtered out using SNP Function Portal [26].
There were 184,452 remaining SNPs and these coding SNPs
would be the input of our proposed method in the following
study.

B. Genome-wide SNP Network

For these 184,452 SNPs, there are 17,011,177,926 unique
pairs. Due to the intensive computation requirement, we

TABLE II
STATISTICS OF INTERACTIONS & UNIQUE SNPS AT DIFFERENT

THRESHOLDS IN PARKINSON DISEASE STUDY.

Thres- Total number Total number SNP with Max No. of
hold of Interactions of SNPs Connectivity Edges
1 × 10−5 45672 52685 rs7909279 30
5 × 10−5 319624 152520 rs7909279 40

rs3739776 40
rs6560142 40

1 × 10−4 718788 169865 rs4752071 54

adopted parallel computing to construct this network. All the
184,452 SNPs were divided into 27 subsets, while the first 26
subsets contained 7,000 SNPs each and the last subset only
2,452 SNPs. Each of the 27 subsets would be calculated SNP-
SNP interaction value with all the other remaining subsets,
so there will be

∑27
i=1 i = 378 combinations. We performed

this huge computational work on a parallel computing cluster
constituting with 378 CPU nodes, where each node is under
the configuration of 4D, 3.0GHz processor, 1GB RAM, 120G
hard disk drive storage and Windows XP operating system.
The average running time for each CPU node was around 32
hours and the average file size generated by each node was
around 3.5G.

In order to work on the most significant SNP-SNP interac-
tions, different thresholds on P -values (1×10−5, 5×10−5 and
1 × 10−4) were considered. For example, when the threshold
was set to be 1 × 10−5, only the SNP-SNP interaction with
being smaller than 1 × 10−5 would be studied, otherwise, the
corresponding interaction would not be considered. Table II
shows the number of interactions and the number of SNPs in
the genome-wide SNP network under different thresholds. The
column in “SNP with Max Connectivity” indicates the SNP
ID whose interactions with others is the maximum among all
SNPs in the network, and “No. of Edges” tells us how many
SNPs they are connected in the SNP network.

C. Seed Information

According to the seed selection criterions described in
“Network Structure Analysis” section, for Parkinson disease,
there are 220 related genes found after a literature searching,
where 120 of them have genotype data. We collected 17 genes
that definitely have clear descriptions with Parkinson disease.
An individual list of SNPs corresponding to each of these 17
genes were downloaded and checked about overlaps with our
own data set. For each gene, we picked out one or more SNPs
that have a comparable larger number of edge connections
with other SNPs as the seeds for different thresholds. Table
III shows a detailed information about these 32 seeds, which
will be used as the initial seeds.

D. SNP Sub-networks Construction

In order to preserve the characteristics of SNP sub-networks
under three different thresholds, resulting sub-networks ob-
tained under the setting with a small threshold will be em-
ployed as initial seeds of sub-networks with a large threshold,
e.g., a sub-network determined under the threshold of 1×10−5
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TABLE III
SEEDS INFORMATION IN PARKINSON DISEASE STUDY.

Seed Gene Gene NO. of Edges
ID Symbol 1 × 10−4 5 × 10−5 1 × 10−5

rs3738814 23400 ATP13A2 14 6 0
rs4680 1312 COMT 19 9 0
rs1544325 1312 COMT 17 8 0
rs3758653 1815 DRD4 9 3 3
rs11246226 1815 DRD4 12 4 0
rs10205801 26058 GIGYF2 18 12 0
rs10211596 26058 GIGYF2 18 9 5
rs2199503 2932 GSK3B 16 9 0
rs10878247 120892 LRRK2 20 13 4
rs11564173 120892 LRRK2 11 7 0
rs11564203 120892 LRRK2 27 12 0
rs11829088 120892 LRRK2 25 14 0
rs874250 4729 NDUFV2 11 4 1
rs11660603 4729 NDUFV2 11 5 1
rs705316 4885 NPTX2 20 10 0
rs834835 4929 NR4A2 6 2 0
rs483366 5071 PARK2 29 21 2
rs2022988 5071 PARK2 17 14 6
rs4288183 5071 PARK2 32 8 0
rs9458583 5071 PARK2 29 11 0
rs161802 11315 PARK7 7 2 0
rs178932 11315 PARK7 11 6 0
rs650616 65018 PINK1 16 7 0
rs1043424 65018 PINK1 11 6 0
rs1884082 12 SERPINA3 12 1 0
rs8007632 12 SERPINA3 22 18 5
rs464049 6531 SLC6A3 16 7 0
rs11133767 6531 SLC6A3 19 9 2
rs356168 6622 SNCA 13 5 0
rs2736990 6622 SNCA 13 6 0
rs4242202 6620 SNCB 8 3 0
rs10517003 7345 UCHL1 11 5 0

was employed as an initial sub-network under the threshold
of 5× 10−5, and then the algorithm was applied to this initial
sub-network to detect a suitable SNP sub-network. And also,
the sub-network gained when 5 × 10−5 would be continually
used as the initial seeds when 1 × 10−4. We remark that the
initial seed is always contained in this hierarchical sub-network
structure.

On the other hand, we would like to evaluate the quality of
the resulting SNP sub-networks for three different thresholds.
We employed the modularity definition proposed by Li et al.
[25], which is called D value. The property of modularity
of D suggests a basic topological concept during network
analysis. A module in a network is a region with dense internal
connectivity and sparse external connectivity. Li et al. defined
this modularity in a quantitative manner for evaluating the
partition of a network into communities based on the concept
of average modularity degree. This D value can improve the
resolution limit by considering the information on the number
of nodes in a detected module and the total number of links
in the whole network.

D =
m∑

i=1

d(Gi) =
m∑

i=1

L(Vi, Vi) − L(Vi, V i)

|Vi|
(3)

This measurement evaluates the quality of SNP sub-networks.
The larger of the D value, the better of the sub-network.

The modularity D value of our method under the thresholds
of 1 × 10−5, 5 × 10−5 and 1 × 10−4 are 14.12, 41.85 and
-8.91 respectively. Results show that our method can get a
comparable higher modularity under the threshold of 5×10−5,

TABLE IV
CHARACTERISTICS OF SNP SUB-NETWORKS IN PARKINSON DISEASE

STUDY.
Seeds 1 × 10−5 5 × 10−5 1 × 10−4

NO. of NO. of d- NO. of NO. of d- NO. of NO. of d-
SNPs Edges value SNPs Edges value SNPs Edges value

rs3738814 1 0 0.00 14 22 2.07 25 43 -0.52
rs4680 1 0 0.00 12 14 0.15 57 79 -0.69
rs1544325 1 0 0.00 19 21 0.25 48 62 -1.71
rs3758653 4 3 1.50 10 9 1.10 34 34 -0.74
rs11246226 1 0 0.00 14 15 1.14 26 34 0.00
rs10205801 1 0 0.00 18 46 3.50 22 84 3.27
rs10211596 7 6 1.57 15 16 1.00 36 45 -1.11
rs2199503 1 0 0.00 16 25 1.75 34 50 -1.21
rs10878247 5 4 1.40 22 21 0.86 46 52 -0.93
rs11564173 1 0 0.00 17 22 0.71 46 68 -0.96
rs11564203 1 0 0.00 14 13 0.21 40 45 -1.75
rs11829088 1 0 0.00 17 20 0.76 36 50 -0.97
rs874250 9 8 1.67 12 15 1.08 24 68 1.54
rs11660603 9 8 1.67 12 15 1.08 24 68 1.54
rs705316 1 0 0.00 12 16 1.33 24 41 -0.83
rs834835 1 0 0.00 12 11 0.42 34 34 -1.35
rs483366 9 10 2.11 31 64 2.19 52 120 0.17
rs2022988 9 8 1.67 26 37 1.73 46 125 1.02
rs4288183 1 0 0.00 7 6 0.43 21 23 -1.71
rs9458583 1 0 0.00 17 33 2.94 41 120 2.02
rs161802 1 0 0.00 6 5 0.67 34 59 -0.82
rs178932 1 0 0.00 6 5 0.33 31 43 -0.10
rs650616 1 0 0.00 16 17 1.00 38 78 0.55
rs1043424 1 0 0.00 12 26 2.92 22 52 0.64
rs1884082 1 0 0.00 7 8 1.43 20 24 -1.45
rs8007632 5 4 1.20 18 45 2.61 26 72 0.77
rs464049 1 0 0.00 10 9 0.20 27 27 -1.85
rs11133767 3 2 1.33 19 20 1.16 48 75 -0.79
rs356168 1 0 0.00 8 15 2.75 16 30 0.19
rs2736990 1 0 0.00 8 15 2.75 16 30 0.19
rs4242202 1 0 0.00 3 2 0.33 11 10 -1.45
rs10517003 1 0 0.00 4 3 1.00 8 7 0.13

which indicates that our sub-networks have a more organized
structure in this circumstance. In fact, for most of the seeds,
their SNP sub-networks have the highest d value when the
threshold is 5×10−5. Table IV shows the total number of SNPs
and their edge connections in these 32 SNP sub-networks. We
remark that as we are not interested in a complete partition of
the whole network but the sub-networks with the seed SNPs.

E. SNP Sub-networks Annotation

For each SNP position, we can find out the associated
gene in the chromosome. Based on the SNP sub-network,
we can further construct the gene network of their associated
genes based on their functions. Table V shows the detailed
information of these gene association networks in terms of
their number of genes and the number of edges. In addition, the
similarity between two genes can be computed based on their
molecular functions and biological process in Gene Ontology
(GO) [23], which was implemented with a R Bioconductor
package GOSemSim (http://www.bioconductor.org).

After a biological interpretation of these genes, we found
that some of the gene association networks are directly or
indirectly related to Parkinson disease. We chose one of
the networks, growing from seed rs11133767 (gene locus is
SLC6A3), as an example to demonstrate the effectiveness of
our method. Subgraphs of a, b and c in Figure. 1 give the SNP
sub-networks for three different thresholds and subgraphs of d,
e and f in Figures. 1 give their corresponding associated gene
networks. We can see from the gene association networks of
both 1 × 10−5 and 5 × 10−5 that, two reported Parkinson
related genes, PARK2 and SLC6A3 can be mined out by our
algorithm and they can be connected directly, which provides a
strong proof of the validity and feasibility of our method and
also can be used to identify the functions of the respective
SNP sub-networks. The other genes involved in this network
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TABLE V
CHARACTERISTICS OF GENE ASSOCIATION NETWORKS AT 5 × 10−5 IN

PARKINSON DISEASE STUDY.

Seeds Gene
∑

Similarity NO. of NO. of
Symbol Genes Edges

rs3738814 ATP13A2 0.470 4 6
rs4680 COMT 3.138 10 45
rs1544325 COMT 4.528 12 66
rs3758653 DRD4 2.066 8 28
rs11246226 DRD4 2.425 8 28
rs10205801 GIGYF2 0.635 4 6
rs10211596 GIGYF2 1.709 6 15
rs2199503 GSK3B 1.259 7 21
rs10878247 LRRK2 9.860 18 153
rs11564173 LRRK2 2.659 10 45
rs11564203 LRRK2 3.050 11 55
rs11829088 LRRK2 3.497 12 66
rs874250 NDUFV2 0.252 4 6
rs11660603 NDUFV2 0.252 4 6
rs705316 NPTX2 1.045 6 15
rs834835 NR4A2 1.856 9 36
rs483366 PARK2 7.411 14 91
rs2022988 PARK2 3.358 12 66
rs4288183 PARK2 0.468 5 10
rs9458583 PARK2 1.184 6 15
rs161802 PARK7 0.560 4 6
rs178932 PARK7 0.659 5 10
rs650616 PINK1 2.941 10 45
rs1043424 PINK1 0.736 6 15
rs1884082 SERPINA3 0.239 9 36
rs8007632 SERPINA3 1.488 9 36
rs464049 SLC6A3 1.477 8 28
rs11133767 SLC6A3 3.506 11 55
rs356168 SNCA 0.119 2 1
rs2736990 SNCA 0.119 2 1
rs4242202 SNCB 0.015 2 1
rs10517003 UCHL1 0.495 4 6

TABLE VI
FUNCTIONS OF GENE ASSOCIATION NETWORK DERIVED FROM

RS11133767 IN PARKINSON DISEASE STUDY.
Gene Gene Function GO
Symbol ID Terms
PARK2 5071 Mutations cause Parkinson disease and autosomal 35

recessive juvenile Parkinson disease
SLC6A3 6531 Variation is associated with idiopathic epilepsy, 28

susceptibility to Parkinson disease
FLJ33718 285489 Essential for neuromuscular synaptogenesis, 4

functions in aneural activation of muscle-specific
receptor kinase. Be a cause of familial limb-girdle
myasthenia autosomal recessive

BTBD14A 138151 NACC family member 2, BEN and BTB (POZ) 7
domain containing

PALLD 23022 Be associated with a susceptibility to pancreatic cancer 8
type 1, also a risk for myocardial infarction

FLJ10292 55110 Mago-nashi homolog B 6
LRPAP1 4043 Low density lipoprotein receptor-related protein 20

associated protein 1
GLP2R 9340 Stimulates intestinal growth and upregulates villus 7

height in the small intestine
ADAMTS15 170689 ADAM metallopeptidase with thrombospondin type 1 motif 7
GRID2 2895 Be the predominant excitatory neurotransmitter receptors in 22

the mammalian brain Play a role in neuronal apoptotic death
ERBB4 2066 Be activated by neuregulins and other factors and induces a 33

variety of cellular responses including mitogenesis and
differentiation. Mutations in this gene have been associated
with cancer

are also thought to be indirectly related to Parkinson disease,
for example, FLJ33718 is associated with myasthenia, GRID2
plays a role in neuronal apoptotic death and mutations in
ERBB4 have been associated with cancer. These results share
some features for Parkinson disease. The detailed function
descriptions of these gene products and their number of GO
terms discovered within Gene Ontology [23] at 5 × 10−5 are
shown in Table VI.

IV. CONCLUSION

In this paper, we have presented a novel method to mine,
model and evaluate SNP sub-networks from SNP-SNP interac-
tions, which is further annotated by its respective gene associa-
tion network. The SNP interaction of the proposed approach is
based on logistic regression between two SNPs, by which we
can construct a genome-wide SNP-SNP interaction network.
We tested the proposed method for one real data set: Parkinson
disease data. Some useful SNP seeds relevant to diseases
were employed to detect SNP sub-networks with a maximal
modularity. Their associated gene association networks were
considered afterward and their functional similarity values
were calculated to show the biological relevance. We found
that some of the gene association networks reveal strong
structural and functional relationships with diseases.

All in all, our framework can discover sub-networks within
a whole-scale genome-wide network efficiently and can pro-
vide a new insight into the relationships between SNPs and
genes. On the one hand, from SNP to gene level, the gene
relationships expressed by SNP networks can be considered
as an extension of NCBI, Gene Ontology or other biomedical
databases. On the other hand, from gene to SNP level, existing
mature gene network can help us modify or annotate SNP sub-
networks, which can give a better explanation of their behavior
in biological function and explore some potential functional
relationships from SNP level to gene level.
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