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Abstract—With the merits of faster development time and
reduced risk, identifying new indications for marketed drugs
draws more and more attention. In particular, repositioning
drugs with known indications has become an hot topic in the
area of computational systems biology. However, one of the
common shortcomings for most of the previous methods is the
ignorance of side effect, i.e., drug through primary targets and
off targets might induce both desired and unintended effects
respectively, which could not appropriately evaluated in most of
existing methods. In this paper with a new measure considering
both efficacy and side effect, we developed a new method for
identifying the repositioned drugs against prostate cancer by
evaluating the mutual relations of the gene expression levels
between prostate cancer samples and those induced by bioactive
compounds. In this measure, the overlap between gene sets that
were oppositely regulated in disease state and drug treatment
state was quantified by jaccard index as drug’s efficacy while
the overlap between essential genes and positively correlated
genes (or regulated just after drug treatment) was quantified
by jaccard index as drug’s side effect, which were balanced with
a parameter λ. The preliminary results on repositioning drugs
for prostate cancer verify the effectiveness and efficiency of the
new method.

I. INTRODUCTION

People worldwide are still threatened by various complex
diseases such as cancer, diabetes and so on. To combat these
diseases, much effort was made to develop effective drugs
against them. Generally, it may take about eight to ten years
with over one billion dollars spent to develop a new drug
de novo. However, with the cost and time to develop a
new drug continuing to increase, most of drug candidates
were given up in different Research&Development stages for
insufficient efficacy or serious side effects. From 1996 to 2011,
the number of drugs approved by FDA (U.S. Food and Drug
Administration) declined steadily [1].

One possible approach for circumventing this situation is
so called drug repositioning, which attempts to mine the
potential of marketed drugs with well known safety profile
and identify new indications besides the designed indications

for them. As the safety profiles of marketed drugs are generally
known, drug repositioning has the advantage of mitigating the
costs and risks associated with early development stage and
shortening routes to approval for therapeutic indications. Due
to this fact, drug repositioning draws more and more attention
recently. Successful examples of drug repositioning include the
indication of sildenafil for erecile dysfuction and pulmonary
hypertension, thalidomide for severe erythema nodosum lep-
rosum, and retinoic acid for acute promyelocytic leukemia[2],
[3].

Most of the above mentioned successful examples were
discovered clinically or experimentally, but it is still unclear for
their molecular mechanisms against various diseases. There-
fore, computational methods that can effectively reposition
drugs against various diseases in a large scale are greatly
needed. On the other hand, huge amount of high-throughput
data related to drugs at various levels are rapidly accumulated.
Now, it is possible to model cellular systems and uncover the
mechanism underlying manifested phenotypes by exploring
such system-wide data. In particular, repositioning drugs with
known indications computationally becomes an hot topic in
the field of computational systems biology.

Recently, many computational methods or approaches were
proposed to reposition drugs against various diseases. Based
on data sources utilized, these methods maily fall into two
categories. In the first category, various static prior informa-
tion is combined and utilized with different approaches for
predicting new indications for drugs. The basic idea of them
is, if two drugs with known indications have a sufficient high
similarity in some attributes, their known indications would be
exchanged each other. In some methods, drug’s off-target set is
predicted first, then the overlap or sequence similarity among
drug’s total target set (primary target plus off-target) is used for
transferring indication among drugs [4], [5], [6], [7], [8], [9],
[10], [11]. With more types of data related to drugs available,
multiple data sources are integrated to reposition drugs in
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different methods. In Gottlieb et al’s work, structure, function
information of target protein were employed to measure the
similarity among drugs while disease gene’s topological and
functional properties and disease’s phenotype description were
used to evaluate the similarity among diseases and the known
indication of drugs were transferred based on both drug’s
similarity and disease’s similarity[12]. More recently, in Yang
and Agarwal’s work, indications were transferred among drugs
guided by their similarity in the side effect profile[13]. In
[14], heterogeneous modules composed of drugs, diseases and
genes were extracted from background biomolecular interac-
tion network and drug were repositioned based on common
membership.

Microarray data has been used as surrogate of transient
cellular state under specific conditions. Naturally, in the second
category, micoarray data are utilized to characterize cellular
state and reposition drugs against various diseases. Methods
of the second category follow the common assumption, that is,
the aim of drug interfering is to restore the cellular state to nor-
mal state, and the changes of the transcriptional level induced
by drug should reverse the changes of the transcriptional level
under disease state. To this aspect, the basic idea of them is,
if the differential expression profile under drug administration
and disease states is anti-correlated significantly, the drug will
has the potential to cure that disease. Therefore, in the second
category, the key is how to measure the anti-correlation. In
lamb’s work, gene set enrichment analysis was employed to
measure the correlation between expression profile under drug
administration and that in disease state[15] while different
modified versions of gene set enrichment analysis were used
for measuring the relation between the two condition specific
gene expression profiles[3], [16]. In Hu and Agarwal’s work,
simple Pearson correlation coefficient was employed to quan-
tify the anti-correlation between two condition specific gene
expression signatures[17] while the overlap between opposite
regulated gene sets were quantified as the anti-correlation in
[18].

It can be seen that the common idea of most of existing
methods is to reposition drugs through measuring the potential
efficacy of drug against disease by some similarity or inverse
similarity in some attributes. However, a cellular system is
a complex networked system. The perturbations on some
cellular elements induced by drug will propagate through the
related network. Therefore, drug can induce both desired effect
and some unintended effect simultaneously. However, one of
the common shortcomings for most of the previous methods
is the ignorance of side effect.

With this in mind, in this paper, we developed a new method
for repositioning drugs against prostate cancer by considering
both drug efficacy and side-effect. The main characteristic
is a new measure for evaluating the potential overall effect
of drug against prostate cancer. In this measure, the overlap
between gene sets that were oppositely regulated in disease
state and drug treatment state is quantified by jaccard index
as drug’s efficacy while the overlap between essential genes
and positively correlated genes (or regulated just after drug

treatment) is quantified by jaccard index as drug’s side effect,
which are balanced with a parameter λ.

II. MATERIALS AND METHODS

A. Materials

We combined data from publicly available microarray data
set representing prostate cancer, gene expression profiles from
human cell lines treated with drugs or small molecules and list
of essential genes in human to reposition drug against prostate
cancer.

The expression data set of prostate cancer was downloaded
from National center for Biotechnology Information(NCBI)
Gene Expression Omnibus(GEO) database [19] with accession
number GDS1439 as it was already used in [18]. The data set
comprise of six benign samples and thirteen disease samples.

As the annotation information, that is, the mapping between
probe set and gene corresponding to each microarry platform
updated regularly, we reannotated GDS1439 in soft format
with latest corresponding GPL annotation file downloaded
from AILUN’s website[20]. Subsequently, in cases where
multiple microarray probe sets mapped to the same Entrez
GeneID, the mean expression value of them was assigned to
the Entrez GeneID. Finally, the list of up and down-regulated
genes was generated by comparing control samples to disease
samples with R package named limma[21] and further ranked
using t-statistic.

Gene expression profiles from human cell lines treated with
drugs or small molecules were fetched from Connectivity Map
02[15]. More specifically, ratio matrix was downloaded from
cmap02, in which each element denotes the ratio of probe set’s
expression in certain treatment instance.

Of all 6,100 treatment instances, 1741 instances were treated
on PC3 prostate cancer cell line, which were retained for
further analysis. At the same time, submatrix corresponding
to this 1741 instances was extracted from ratio matrix. As this
1741 instances were conducted with two different affymetrix
genechip platforms, that is, HG-U133A and HT HG-U133A,
the submatrix was separated into two matrices further based on
platform. Subsequently, we annotated each matrix with latest
corresponding GPL annotation file downloaded from AILUN’s
website[20] separately. In cases where multiple microarray
probe sets mapped to the same Entrez GeneID, the geometric
mean of ratio of them was assigned to the Entrez GeneID.
Finally, this two annotated matrices were merged into a new
matrix named PC ratio matrix by removing genes that absent
in any matrix. In PC ratio matrix, the list of up and down-
regulated genes for each instance were generated by the value
of element in each column naturally.

As disease expression data set and PC ratio matrix were
also conducted with different platforms, to remove potential
bias, we retained only genes that are expressed in both.

In this work, list of essential genes in human was obtained
from DEG database[22]. Subsequently, symbols of essential
genes were transformed into Entrez GeneID by R pack-
age named biomaRt. Besides, we obtained the list of drugs
that were approved by FDA or under clinical trial against

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

281 Xi’an, China, August 18–20, 2012



prostate cancer from the supplementary materials of Jin et al’s
work[23] and took them as the gold standard set for prediction.

B. Methods

The idea behind the proposed method is that cellular sys-
tems is a complex networked system. Disease can be viewed as
such a perturbed system. Significantly differentially expressed
genes under disease state can be used as surrogate of cellular
change to some extent. The aim of drug treatment is just
removing this cellular changes and restoring cellular system
to normal state. Therefore, number of abnormally regulated
genes after drug treatment that were regulated oppositely
under disease state can be used to measure the extent to
which diseased cellular systems restored. On the other hand,
some genes were newly regulated or further regulated in same
direction after drug treatment, which may be the source of
side effect. Essential genes are genes that are indispensable to
support cellular life[22]. Their changes in transcription level
may cause significant unfavorable phenotype variation, such as
side effect. Therefore, the number of essential genes that were
newly regulated or further regulated in same direction after
drug treatment can be used to measure the extent to which side
effect emerged to some extent. Based on this two measure, a
new scheme could be developed to score and rank drug-disease
association and reposition drugs against diseases. The details
are addressed in the following.

1) Evaluating drug-disease associations based on microar-
ray data: As mentioned in above section, two category of
ranked lists of genes were prepared. The first category include
the ranked list of up regulated genes and ranked list of down
regulated genes in prostate cancer tissues from GEO data while
the other category include the ranked list of up regulated genes
and ranked list of down regulated genes of perturbed cell line
genes obtained from CMAP02.

Motivated by Shigemiu’s work[18], subsequently, the top
and bottom k% genes were defined as up-regulated genes in
prostate cancer (shortened as PCU) and down-regulated genes
in prostate cancer (PCD) respectively. In the latter category,
we defined the top and bottom k% genes as up-regulated genes
by bioactive compounds (DU) and down-regulated genes by
bioactive compounds (DD) respectively, where k ranges from
10 to 30 in increments of 5.

The overlap or similarity between DU and PCD was mea-
sured by Jaccard index [24] as efficacy score named score1

up

, that is,

score1
up =

|DU ∩ PCD|
|DU ∪ PCD| (1)

On the other hand, we also employed Jaccard index to
evaluate the overlap between set of genes that fall in DU while
outside PCD and set of essential genes(EG) as side effect score
named score2

up,that is,

score2
up =

|(DU \ PCD) ∩ EG|
|(DU \ PCD) ∪ EG| (2)

Further, effect of drug reflected in up regulated genes was
measured as score up, which combines score1 and score 2

with a balancing factor λ varying from 0 to 1.

scoreup = λ ∗ score1
up − (1 − λ) ∗ score2

up (3)

Similarly, the overlap or similarity between DD and PCU, the
overlap between set of genes that fall in DD and outside PCU
and set of essential genes were measured by Jaccard index as
score3 and score 4 respectively,

score1
down =

|DD ∩ PCU |
|DD ∪ PCU | (4)

score2
down =

|(DD \ PCU) ∩ EG|
|(DD \ PCU) ∪ EG| (5)

Further, effect of drug reflected in up regulated genes was
measured as score down, which combines score3 and score 4
with a balancing factor lambda.

scoredown = λ ∗ score1
down − (1 − λ) ∗ score2

down (6)

Finally, the association strength between drug and prostate
cancer was evaluated by combing score up and score down,
that is,

score = scoreup + scoredown (7)

2) Collapsing instances: In cmap02, multiple instances
may correspond to same drug and even with same dose.
We offered three different options for handling such cases.
The first option was to simply retain the multiple instances.
Accordingly, the number of true positive, false positive, true
negative and false negative will be counted by instance in
repositioning experiment. The second option is to calculate
the maximum of individual instances’s score that correspond
to same drug with specified dose as the repositioned score
of specified drug-dose pair. Accordingly, the number of true
positive, false positive, true negative and false negative will
be counted by drug-dose pair. The last option is to calculate
the maximum of individual instances’s score that correspond
to same drug as the repositioned score of specified drug.
Accordingly, the number of true positive, false positive, true
negative and false negative will be counted by drug.

3) Choice of parameter: With fixed k and λ, the strength
of association between prostate cancer and all compounds in
PC ratio matrix were measured and ranked by score. The F1
score defined below was adopted as repositioning performance
index

F1 =
2 ∗ precision ∗ recall

precision + recall
(8)

where precision is the ratio of true positives in predicted
positives and recall is the ratio of true positives that can be
predicted correctly. The threshold above which the highest F1
score was achieved was used to make future prediction. We
reposition a drug against prostate cancer if its score is above
the threshold. Subsequently, the values of k and λ that give
maximum F1 score will be identified.
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Fig. 1. F1 score of repositioning experiment under option 1 of collapsing
instance, in which p = k
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III. RESULTS AND DISCUSSION

As described in last section, different reposition efficacy
measured by F1 score will be obtained with different combi-
nations of k and λ. Besides, the option of collapsing instances
will also affect the repositioning result. To explore the impact
of parameters on drug repositioning, we performed 105 drug
repositioning experiments under each option of collapsing
instances with 105 combinations of parameters respectively,
in which k vary from 10 to 30 by 5 and λ range from 0 to 1
by 0.05. All the experiments’s F1 scores under each option of
collapsing instance were summarized in figure1, figure2 and
figure3 respectively.

It can be seen from this three figures that optimal F1 score
always were obtained with 0 < λ < 1 with fixed k. λ = 1 or
λ = 0 means only efficacy score or side effect were utilized to
measure drug-disease association respectively. Therefore, this
results demonstrated the necessity of measuring drug-disease
association with integrated efficacy and side effect information
to some extent.

To further demonstrate the superiority of repositioning drug
by integrating both efficacy and side effect measure, we took
a close look at figure 3. It summarized repositioning effort
with collapsing instance option 3. The global optimal F1
score was obtained with k = 10 and λ = 0.2. Under this
parameter setting, we detected 132 unique bioactive com-
pounds for prostate cancer. Of the 132 compounds, 16 of
these are FDA approved or under clinical trial, which were
summarized in table1. That also means we recovered 16
of the 45 compounds approved by FDA approved or under
clinical trial for prostate cancer in PC ratio matrix. On the
contrary, nine of this 45 compounds were among the top 132
compounds sorted by drug-disease score with k = 10 and
λ = 0. With k = 10 and λ = 1, ten of this 45 compounds
were among the top 132 compounds. Besides, five drugs, that
is, azacitidine, dexamethasone,estradiol, metformin, tamoxifen
were repositioned against prostate cancer successfully with
k = 10 and λ = 0.2 and couldn’t repositioned under the
other two parameter settings, which imply the superiority of
repositioning drug by integrating both efficacy and side effect
measure further.

TABLE I
REPOSITIONED DRUGS THAT LIE IN GOLD STANDARD SET

Drug Name Status
sirolimus clinical trial
paclitaxel clinical trial
phentolamine clinical trial
tanespimycin clinical trial
doxorubicin clinical trial
methylprednisolone clinical trial
estradiol clinical trial
vinblastine clinical trial
valproic acid clinical trial
metformin clinical trial
theophylline clinical trial
diethylstilbestrol clinical trial
tamoxifen clinical trial
azacitidine clinical trial
dexamethasone clinical trial
fulvestrant clinical trial
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IV. CONCLUSION AND FUTURE WORK

A cellular system is a complex networked system. Pertur-
bation caused by drug will propagate through this networked
system. Therefore, a drug can induce both desired effect and
some unintended effect, which were ignored by most of the
previous repositioning methods for measuring drug-disease
potential associations. In this paper, we developed a new
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method for identifying such repositioned drugs against prostate
cancer based on a new measure. In this measure, number of
abnormally regulated genes after drug treatment that were
regulated oppositely under disease state was quantified as
drug’s efficacy while the number of essential genes that were
newly regulated or further regulated in the same direction after
drug treatment was quantified as drug’s side effect, which
were balanced with a parameter λ. The preliminary results on
repositioning drugs for prostate cancer verify the effectiveness
and efficiency of the new method.

However, there are several issues that limit the repositioning
performance. First, the size of differentially expression genes
that constitute disease signature or drug signature were chose
empirically, which cannot guarantee the resulted signature’s
biological relevance. For this problem, we will integrate other
data, such as biomolecular interaction data and develop new
model and algorithm for extracting disease signature and drug
signature with more biological relevance. Second, only overlap
among genes that abnormally regulated in disease state and
drug treatment and essential gene was quantified as drug’s
overall effect. The amplitude of differential expression and
other information were not taken into account. With this in
mind, we will further develop more relevant measure to define
drug’s efficacy and side effect by integrating multiple available
information with disease signature and drug signature at hand.
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