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Abstract—A β-turn is a secondary protein structure type that
plays a significant role in protein folding, stability, and molecular
recognition. On average 25% of amino acids in protein structures
are located in β-turns. Development of accurate and efficient
method for β-turns prediction is very important. Most of the
current successful β-turns prediction methods use support vector
machines (SVMs) or Neural Networks (NNs), however a method
that can yield probabilistic outcome, and has a well-defined
extension to the multi-class case will be more valuable in β-turns
prediction. Although kernel logistic regression (KLR) is a pow-
erful classification technique that has been applied successfully
in many classification problems, however it is often not found
in β-turns classification, mainly because it is computationally
expensive. In this paper we used KLR to obtain sparse β-turns
prediction in short evolution time after speeding it using Nystrom
approximation method. Secondary structure information and
position specific scoring matrices (PSSMs) are utilized as input
features. We achieved Qtotal of 80.4% and MCC of 50% on
BT426 dataset. These results show that KLR method with the
right algorithm can yield performance equivalent or even better
than NNs and SVMs in β-turns prediction. In addition KLR
yields probabilistic outcome and has a well-defined extension to
multi-class case.

Index Terms—beta-turn, kernel logistic regression, position
specific scoring matrices, secondary structure information.

I. INTRODUCTION

The number of known protein sequence is increasing rapidly
as a result of genome and other sequencing projects. Conse-
quently this increase widen sequence-structure gap rapidly[1],
[2]. Thus computational tools for predicting protein structure
and function are highly needed to narrow the widening gap[3].
there are four distinct levels of protein structures, these levels
are: primary structure which refers to amino acid linear
sequence of the polypeptide, secondary structure which is
defined by the patterns of hydrogen bonds between backbone
amide and carboxyl groups, tertiary structure which is the
three dimensional structure of a single protein molecule, and
quaternary structure which is a larger assembly of several
protein molecules or polypeptide chains.

The basic elements of the secondary structure of proteins
are α-helices, β-sheets, coils, and turns. A turn is a structural
motif where the α-atoms of two residues are separated by
few (usually 1 to 5) peptide bonds, and the distance between
them is less than 7A◦, while the corresponding residues do
not form a regular secondary structure element such as an
α-helix or β-sheet. Different turns are classified according to
the separation between the two end residues. The end residues

are separated by four peptide bonds in α-turns, three peptide
bonds in β-turns, two peptide bonds in γ-turns, one bond
in δ-turns, and five bonds in π-turns. β-turns are the most
common found type of turns that constitute approximately
25% of the residue in protein. They play a significant role
in protein configuration and function, and its formation is a
vital stage during the protein folding. They were found to
be more helpful in the context of molecular recognition and
in modeling interactions between peptide substrates receptors,
because they tend to be more solvent exposed than buried[4].
In the recent years it is found that β-turns are important in
the design of various peptidomimetics for many diseases[5].
Therefore, development of effective, and efficient prediction
methods for β-turns identification in protein will be helpful in
fold recognition and drug design[6].
β-turns are further classified into different types ac-

cording to the dihedral angles (φ,ψ) of the central two
residues. the classification scheme proposed by Hutchinson
and Thornton[26] recognizes nine distinct types of β-turn:
Types I,I’,II,II’,VIa1,VIa2,VIb,VIII,IV. In this classification
the most frequently-occurring type is type IV, which constitute
approximately (35%) of the β-turns. types VIa1,VIa2, and VIb
are rare types.

Most of the successful β-turns prediction methods are based
on either support vector machines (SVMs) or neural networks
(NNs). Ce Zheng and Lukasz[6] applied SVM based ensemble
to predict β-turns, they used position specific scoring matrices
(PSSMs) and secondary structure information as features in
their prediction model. Petros and Jonathan [7] developed a
method based on SVM, their method uses PSSMs, predicted
secondary structures, and predicted dihedral angles as input
features to the SVM. Adrian J et al[8] used a neural network
to predict both the location and types of β-turn in protein, they
incorporated secondary structure information in the features to
be used as input to the NN. Kaur and Raghava[9] used two
feed-forward back-propagation networks with a single hidden
layer, where the first-sequence structure network is trained
with the PSSMs. The initial prediction from the first network
and the predicted secondary structure using PSIPRED[10],
[18] are used as input to the second structure-structure network
to refine the prediction obtained from the first network. Bent
Petersen et al [11] presented a neural network method called
NetTurnP, for predicting β-turns and β-turn types. Their
method consists of two artificial neural network layers, they
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used PSSMs, secondary structure, and surface accessibility as
input to their model.

There is another method that can perform well as SVMs and
NNs, which is the kernel logistic regression (KLR). KLR is a
kernel version of logistic regression (LR). It is often not found
on predicting protein secondary structures and β-turns due to
its computational demand. However unlike SVMs and NNs,
KLR yields a-posterior probabilities based on a maximum
likelihood argument, that is beside predicting class labels, KLR
provides interpretation about this labeling. When it comes to
β-turn types prediction KLR has an additional advantage that
its extension to multi-class classification is well described. In
this paper we show that KLR can be used in predicting β-turns
in an efficient and effective way using Nystrom approximation
and the K-means clustering.

II. METHODS

A. Data sets

The uniform dataset of 426 nonhomologues proteins
(BT426)[29], the dataset of 547 protein sequence (BT547),
and the dataset of 823 protein sequence (BT823) are used
to evaluate the performance of our KLR method. Several re-
searchers used BT426 as a golden set of sequences upon which
performance values are reported and compared. This dataset
consists of protein chains whose structure has been determined
by X-ray crystallography at a resolution of < 2.0A◦ or better.
Each chain contains at least one β-turns region. In total 23,580
amino acids, corresponding to 24.9% of all amino acids, have
been assigned to be located in β-turns. None of the sequences
in the dataset shares more than 25% sequence identity. BT426
has been used by various recent β-turns prediction methods
therefore; we can use it to make direct comparisons with
these methods. The other two datasets BT547, and BT823 are
constructed for training and testing COUDES[28].

B. Kernel logistic regression
KLR is the kernel version of logistic regression that allows

non-linear probabilistic classification by constructing the logis-
tic regression in higher dimensional feature space using kernel
function K : χ × χ → F . The kernel function evaluates the
inner product between the input vectors in the feature space,
i.e. K(x, x′) = ϕ(x).ϕ(x′), where x ∈ χ ∈ RD. The KLR
can be constructed in the feature space such that

Pr(Y = −1|X = x,w) =
ewT ϕ(x)+b

1 + ewT ϕ(x)+b

Pr(Y = 1|X = x,w) = p1i =
1

1 + ewT ϕ(x)+b
(1)

Where w is the KLR parameters and b is the intercept term.
The panelized negative log likelihood (PNLL) is normally

used to infer KLR parameters and it can be defined in the
primal weight space as follows[13]:

minw,b
1

2
wTw+

v

2

N∑

i=1

log(1+ exp(−yi(w
Tϕ(xi)+ b))) (2)

Where v is the penalty term. One of the most popular
techniques used to find the maximum-likelihood estimation
(MLE) for the parameters of the LR model is the iteratively
re-weighted least squares (IRLS) method, which use Newton-
Raphson algorithm[14]. The same method can be used for
KLR in the primal weight space in which the solution for w
on the (c+1)th iteration using Newton-Raphson update can be
given as in the following equation, given that we normally
start from initial parameter w0

w(c+1) = w(c) + s(c+1) (3)

Where s(c+1) in each iteration is determined by the follow-
ing minimization problem

qc+1 = mins(c+1)
1
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1i ). The solution to equation (4) at iteration (c+1) is given

by the following dual problem

(
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) (
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where1N = (1, 1, ..., 1)T , 1N ∈ RN , z(c+1) = (z
(c+1)
1 , z
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The IRLS method for large scale problem is computa-
tionally expensive, because the linear system in equation (5)
must be solved for each Newton’s iteration. To reduce the
computation cost of IRLS we can adopt eigendecomposition
of the kernel matrix K in the form.

K = PΛP
′

(6)

Where Λ = diag(λi), λ1 ≥ λ2 ≥ ..... ≥ 0 are the
eigenvalues of the matrix K, and P is the matrix of the
eigenvectors that correspond to the eigenvalues. We can select
the first p eigenvectors and eigenvalues from the matrices
P and Λ respectively, where p ≪ N to approximate the
eigendecomposition matrix given in equation (6). This ap-
proximation is motivated by its widely usage e.g. principal
component analysis. Using this approximation the computa-
tional cost can reduced dramatically. However computing the
eigendecomposition itself is also computationally expensive.
Nystrom method can be used to reduce the computation cost of
computing the eigendecomposition by selecting small sample
of size M ≪ N from the training data[15] to create the
eigenproblem of equation (6). Then the required eigenvectors
and eigenvalues at all N points can be approximated as:

λ̃i

(N)
=
N

M
λ

(M)
i , p̃i

(N) =

√
M

N

1

λ
(M)
i

KN×Mp
(l)
i (7)
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The selected M ≪ N from the features matrix X should
minimize the mean squares error or in another words it should
contain as much information as possible. Since the Nystrom
low-rank approximation depends crucially on the quantization
error induced by encoding the sample set with landmark
points one, can simply use the clusters obtained with K-means
algorithm with outliers removal as a selected vectors[16], [13].
The computation time of the KLR using Nystrom and K-mean
clustering scales to O(NM2) whereas the computation time
of the SVMs is O(N3).

C. features vector

The features that are used in this study include PSSMs,
and secondary structure information. It has been shown that
PSSMs contributed significantly to the accuracy of β-turns
prediction[6], [11]. The PSSMs are in the form of 20*M,
where M represents the sequence length. The PSSMs were
generated using the iterative PSI-BLAST program[17] against
National Center for Biotechnology Information (NCBI) non-
redundant (nr) sequence database using the default parameters.
The PSSMs values are scaled to values between 0 and 1. For
the secondary structure information features, four secondary
structure prediction methods are utilized for all protein chains.
These four prediction methods are PSIPRED [18], [19], JNET
[20], TRANSEC [21], and PROTEUS [21]. The secondary
structures were predicted as three structures: helix, strand and
coils. The predicted secondary structure information from the
four secondary structure prediction methods are added to the
PSSMs features. A window size of seven residues is used
for the PSSMs. This is in accordance with Shepherd et al[8]
who found that the optimal prediction for β-turns is achieved
using window size of seven or nine. The total number of the
features that are based on PSSMs and secondary structure
information is (20*7+4*3=152). Similarly as in [6], another
64 features were added to the input vector, 4 of them are
the confidence score of the central amino acid using the four
prediction methods, 48 features representing a binary value for
a specific configuration of the secondary structure using the
four methods for the central and two adjacent residue, and 12
features representing the ratio between the number of residues
in a given secondary structure and the window size. Thus the
total number of features in the input vector is 216. Also similar
to [6], features selection methods based on information gain
and CHI-squared are employed to reduce the features to 90.

D. Training and testing

To test the accuracy of β-turns prediction, seven fold cross
validation was performed on all the datasets. That is, these sets
were randomly divided into seven subsets, each containing
equal number of proteins. Each set is an unbalanced set
that retains the naturally occurring proportion of β-turns and
non β-turns. Five of the seven subsets were merged together
to form a training set that will be used to train the KLR
model. The KLR model is validated for minimum error on
the sixth subset to avoid over-training. The last subset is used
for testing. This process was repeated seven times to test

the prediction result for each testing set. The final prediction
results are taken as the average of the results from the seven
testing sets.

E. Performance measures

The quality of prediction is evaluated using five measures,
MCC, Qtotal, Qpredicted, Qobserved, and Specificity. These
measures are consistent with the test procedures and measures
applied to evaluate competing methods. Let TP (true positives)
be the number of correctly classified β-turns residues, TN
(true negatives) be the number of correctly classified non β-
turns residues, FP(false positives) be the number of non β-
turns incorrectly classified as β-turns residues and FN (false
negatives) be the number of β-turns incorrectly classified as
non β-turns residues. The Matthews correlation coefficient
(MCC) can be calculated as [30]:

MCC = (TP∗TN−FP∗FN)√
(TP+FN)∗(TN+FP )∗(TP+FP )∗(TN+FN)

(8)

The result of MCC is in the range of -1 and 1, where a
value of 1 indicates a perfect positive correlation, a value of
-1 indicates a perfect negative correlation, and a value of 0
indicates no correlation.

Qtotal (prediction accuracy), which is defined as the per-
centage of correctly classified residues, and it is calculated as
follows:

Qtotal =
TP + TN

TP + TN + FP + FN
× 100 (9)

Probability of correct prediction or Qpredicted is the per-
centage of correctly predicted β-turns among the predicted
β-turns. It is also called predicted positive value (PPV), and
it is given as follows:

Qpredicted =
TP

TP + FP
× 100 (10)

Sensitivity or coverage (also known as Qobserved), is the
percentage of correctly predicted β-turns among the observed
β-turns or it is the fraction of the total positive samples that
are correctly predicted, and it is given as follows:

Qobserved =
TP

TP + FN
× 100 (11)

Specificity is the fraction of total negative samples that are
correctly predicted.

Specificity =
TN

TN + FP
× 100 (12)

To measure whether the present method performs better than
random prediction, the additional measure S is calculated. This
measure is the normalized percentage of correctly predicted
samples better than random [8]:

S =
(TP + TN) −R

(TP + TN + FP + FN) −R
× 100 (13)

Where R is given as follows:
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R = (TP+FP )(TP+FN)+(TN+FP )(TN+FN)
(TP+TN+FP+FN) (14)

III. RESULTS AND DISCUSSION

The selected number of vectors M where M ≪ N from
the feature matrix affect the accuracy of the prediction. A
relatively small or big M will yields low performance. To
select the optimal number of vectors a 10 fold cross validation
is used starting with relatively small M and adding more
vectors to M until a point where adding more vectors does
not improve the classification performance. Table I depicts the
prediction accuracy and MCC using different values of M .
The following radial basis functions (RBF) was used as kernel
function.

K(xi, x
′
i) = e

−γ
∣∣xi−x

′
i

∣∣2
(15)

Also a 10 fold cross validation is used to tune the KLR
parameter v, and the kernel function parameter γ.

TABLE I
QTOTAL AND MCC FOR DIFFERNT VALUES OF SELECTED VECTORS M .

Number of selected vectors l Qtotal MCC
110 0.7996 0.46
120 0.7998 0.46
130 0.7997 0.46
140 0.7996 0.46
145 0.8041 0.48
150 0.8054 0.48
160 0.8057 0.48

After a short analysis of various values of threshold we set
its value to 0.45 to obtain the results in table I. The Qtotal
has improved slightly when the threshold value is set to 0.50,
while the MCC dropped to less than 0.46. Similarly, the MCC
has increased when the threshold value is set to 0.40, but at
the cost of Qtotal, which will drop to less than 0.79. The
number of selected vectors M in this research is set to 150 for
BT426 dataset. Using this value for M we obtained a Qtotal of
0.8054, MCC of 0.48, Qpredicted of 0.59 Qobserved of 0.62,
Specificity of 0.86, and S 0f 0.48. The value of S denotes that
our method is much better than random prediction. The MCC
is a robust and reliable performance measure that accounts for
both overpredictions and underpredictions. A high MCC value
indicates a high prediction performance.

To increase the performance of our KLR model further
we used state changing rules. In this rules we put in our
consideration that β-turns occurs in group of at least four
adjacent residues. After analyzing the results obtained by the
KLR prediction, the state changing rules, which will make the
prediction to be more β-turn like are derived as follows:

1- Change isolated non-turn predictions to turn (i.e tnt→
ttt)

2- Change isolated turn prediction to non-turn prediction
(i.e ntn→ nnn)

3- Change the residues that are neighboring two isolated
turn predictions to turn (i.e nttn→ tttt)

4- if there is isolated triplet of turns predictions, then
change the adjacent non-turn prediction with the highest KLR
probability output to turn (i.e ntttn→ ttttn or ntttt).

The above rules should be executed in orders. After applying
these rules, we obtained a better performance, where the MCC
has increased from 0.48 to 0.50.

TABLE II
COMPARISON OF KLR WITH OTHER RECENT β-TURNS PREDICTION

METHODS ON BT426 DATASET.

Method Qtotal Qpred Qobs Specificity MCC
KLR 80.4 58.98 65.25 85.34 0.50

BTNpred[6] 80.9 62.7 55.6 N/A 0.47
NetTurnP[11] 78.2 54.4 75.6 79.1 0.50
BetaTPred2[9] 75.5 49.8 72.3 N/A 0.43
BTPRED[8] 74.9 55.3 48.0 N/A 0.35

DEBT[7] 79.2 54.8 70.1 N/A 0.48
SVM[22] 79.8 55.6 68.9 N/A 0.47

BTSVM[23] 78.7 56.0 62.0 N/A 0.45
E-SSpred[24] 80.9 63.6 49.2 N/A 0.44

1-4 & 2-3 correlation model[25] 59.1 32.4 61.9 N/A 0.17

Table II shows the comparison between our KLR method
and other best existing β-turns prediction methods. In our
method, we use the same features that are used by BTNpred.
Although BTNpred, and E-SSpred achieved Qtotal of 80.9,
which is higher than our own, but because of the unbalanced
dataset (25% β-turns) Qtotal by itself is a poor measure. In
other words, one can achieve a Qtotal of 75% by predicting all
the residues to be non beat-turns. Instead our method shows
high MCC 0.50 compared to BTNpred 0.47 and E-SSpred
0.44. The NetturnP and our method have the highest MCC
0.50 among the other β-turns prediction methods. Other than
BTNpred and E-SSpred our KLR shows the highest Qtotal.

Table III shows a comparison between our method and
other β-turns prediction methods on BT547, and BT823
datasets. Our method obtained the highest MCC 0.50, 0.49
on BT547, and BT823 respectively. Our method shows stable
performances on all the three datasets used.

TABLE III
COMPARISON OF KLR WITH OTHER RECENT β-TURNS PREDICTION

METHODS ON BT54, AND BT823 DATASETS.

Method Data set Qtotal Qpred Qobs MCC

KLR BT547 80.46 59.04 65.36 0.50
BTNpred 80.5 61.6 54.2 0.45

COUDES[28] 74.6 48.7 70.4 0.42
SVM[22] 76.6 47.6 70.2 0.43

KLR BT823 80.66 58.42 64.64 0.49
BTNpred 80.6 60.8 54.6 0.45
COUDES 74.2 47.5 69.6 0.41
SVM[22] 76.8 53.0 72.3 0.45

All of the computations for KLR were carried out using
Matlab version 2010b on a computer with 3 GB RAM, and
1.86 GHz Genuine Intel dual core processor. We compared the
average elapsed time of our method with the BTNpred and E-
SSpred. The results of the comparison are shown in Table IV.
In this comparison, we used fold 1 in all the datasets as a

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

249 Xi’an, China, August 18–20, 2012



test sets and the remaining folds as a training set. Since both
BTNpred and E-SSpred used SVM, we used libsvm[31] on
their features. Note that both E-SSpred and BTNpred used
PSSMs and secondary structure information as features. Our
method used the same features that are used by BTNpred. In
addition to PSSMs and secondary structure information, E-
SSpred added amino acid (AA) composition generated with
classical local coding scheme.

TABLE IV
COMPARISON OF THE ELLAPSED TIME IN SECONDS BETWEEN KLR,

BTNPRED, AND E-SSPRED.

Data Set KLR BTNpred E-sspred
BT426 753.55 11077.185 13036.415
BT547 940.55 13261.755 15726.2
BT823 683.44 18183.256 24140.072

Compared to E-SSpred and BTNpred as shown in Table IV,
our method is faster by more than a factor of 14. Although
the training data in BT823 is more than the training data in
BT547, but its computation time using KLR is less than the
computation time of BT547, that is because the number of
selected vectors M for BT823 is 90, which is by far less than
the number of selected vectors for BT547, which is 140. This
indicates that, for a very large dataset, a very small number
of selected vectors M can be sufficient to approximate its
Kernel matrix, which reflects the capability of our proposed
KLR model to handle large scale datasets.

Fig. 1. ROC curve for the evaluation of the KLR model on the BT426
dataset.

The ROC curve, which is a plot of the sensitivity against the
false positive rate for the evaluation of the KLR is shown in
Figure 1. From the ROC curve, we calculated the area under
the curve (AUC), which is a threshold independent measure.
An AUC value above 0.7 is an indication of a useful prediction
and a good prediction method achieves a value above 0.85[27].

NetTurnP, DEBT, E-SSpred, SVM achieved AUC of 0.864,
0.84, 0.84, 0.87 respectively; our method achieves AUC of
0.861.

IV. CONCLUSION

In this paper, we presented sparse KLR method for β-
turns prediction. The Nystrom method is used to approximate
the eigenvalues and eigenvectors of the Kernel matrix by
selecting M vectors from the features matrix using K-means
clustering algorithm. Then the first p ≪ N eigenvalues and
eigenvectors are used to approximate the eigendecomposition
matrix. Our method uses secondary structure information and
PSSMs as input features. We achieved Qtotal and MCC of 80.4
and 0.50, respectively using BT426 dataset. These results are
comparable and even better than the results obtained by SVMs
and NNs methods. In addition, our method yields probabilistic
outputs and its extension to the multi-class case is well-
defined, which will be appropriate for β-turn types prediction.
The computational complexity of our method is O(NM2) and
its computation time is by far less than that of SVMs methods.
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