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Abstract — RNA-seq data analysis not only detects novel 
transcripts, promoters, and single nucleotide 
polymorphisms in a transcriptome scale, but also shows 
quantitative measurement of gene expression. In order to 
perform differential expression analysis for unraveling 
biological functions, we proposed a workflow which 
integrated annotations from KEGG biological pathways 
and Gene Ontology associations for manipulating multiple 
RNA-seq datasets. The developed system started from 
mapping short reads onto reference genes, and then 
performed normalization procedures on read coverage to 
evaluate and compare expression levels within various 
gene clusters. Different levels of gene expression were 
indicated by diverse color shades and graphically shown in 
designed temporal pathways. Besides, representative GO 
terms associated with differentially expressed gene cluster 
were also visually displayed by a GO tag cloud 
representation. Three different public RNA-seq datasets 
were applied to demonstrate that the proposed workflow 
could provide effective and efficient analysis on 
differential gene expression for either cross-strain 
comparison or an identical sample sequenced at different 
time points. 

Keywords - Gene Ontology, temporal pathway, RNA-seq, 
cross-strain comparison. 

I. INTRODUCTION 
The technologies of high-throughput sequencing (next 

generation sequencing, NGS) exploited dynamic 
complementary DNA sequencing in an approach termed high-
throughput RNA sequencing (RNA-seq) [1]. The advantages of 
RNA-seq technology compared with tiling microarray and EST 
sequencing could be summarized in raising quality, cutting 
down experimental time and cost-efficient scale [2]. Therefore, 
it is overwhelmingly adopted in recent years for transcriptome 
analysis. Up to now, deep sequencing researches were 
employed widely in complex disease gene expression such as 
cancer studies, quantitative analysis of transcript expression 
such as organism diversity and evolution, antisense 
transcriptome analysis, and discovering of novel isoforms [3-5]. 
Another major advantage of RNA-seq is the ability of 
quantitative measurement of each expressed element at 
transcriptome scale, which facilitates researchers to discover 

differential gene expression under various circumstances [6]. 
With rapid growing of bioinformatics algorithms and 
biotechnologies, correlative RNA-seq researches and 
applications are getting more concerned in recent years [7]. 
Typical RNA-seq experiment generates a large number of short 
reads for transcriptome analysis, and these reads could be 
mapped/aligned to expressed genes by reference mapping tools 
[8]. The expression level of each gene could be determined 
according to the number of times a nucleotide being read 
within a gene during the sequencing process. However, most 
analyses still focused on evaluating the existence of a specific 
gene, or a small set of genes related to a selected function at a 
time. Therefore, some important associated information might 
be ignored due to limited analytical scale or non-quantitative 
measurements of gene analysis. In order to comprehensively 
analyze differentiated gene expression from various 
transcriptome datasets, transformed profiles from associated 
gene expression accounts individually into function-orientated 
gene cluster becomes an important, macro-based and 
systematic approach. 

Two functional annotation methods for clustered gene 
groups including biological pathways and GO terms were 
employed in this study. A biological pathway is one of the 
most meaningful clustering representations for biological 
function analysis. It represents a consequent chain of chemical 
reactions catalyzed by cells, enzymes, or ligands. Each 
pathway includes a signal transduction starting with a signal to 
another receptors and ending with changes in cellular behaviors 
[9]. The expression level of each gene within a regulatory 
network was usually different in distinct organs and tissues. It 
was also dynamically changed due to various environmental 
conditions, different disease stages, or distinct phases within a 
cell cycle. By integrating coverage information of RNA-seq 
reads within biological pathways, differential gene expressions 
among different strains or sequencing time points could reveal 
dynamic status in biological function within a gene cluster.  

Another functional annotation method often applied to 
describe gene products is Gene Ontology (GO). The GO is a 
set of structured vocabularies defined by Gene Ontology 
Consortium [10], which is aimed to provide a universal 
standard of functional annotation for gene products. All terms 
in GO are connected with each other by directed acyclic graphs 
with hierarchy relationship.  Each term belongs to one of the 
three independent ontologies: biological process (BP), 
molecular function (MF) and cellular component (CC), which 
respectively represent different aspects of gene in temporal, 
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functional and spatial domains. Today, the GO is frequently 
used as a de facto standard of gene annotation, and various 
studies have shown that the GO terms can provide conserved 
function information in a group of genes through over 
representation analysis [11,12].  Several existing tools based on 
GO approach provided transmission from expressed data to 
gene annotation. For example, GOMiner [13] is a tool for 
analyzing microarray through GO properties to identify 
specific functions with gene-by-gene approach. DAVID [14] is 
an integrated functional analyzer to annotate and categorize 
gene functions from gene/protein identifier lists. They mapped 
those identifiers to common GO terms or gene-interaction 
maps through bioinformatics resources. These tools performed 
well in known gene function and gene network analyses. 
Especially, GO plays an important role in function annotation 
and categorization of unidentified and unannotated sequences. 

Through previously discovered functional features, the 
sequenced RNA-seq could be transformed from quantitatively 
measured coverage rates to gene expression levels as a global 
view of biological system responses. In this study, we have 
focused on the evaluation of dynamic expression of specific 
gene clusters among different conditions. The differential gene 
expression levels among various RNA-seq datasets regarding a 
mapped pathway or a GO term would be statistically analyzed 
and graphically shown by a novel representation for on-line 
users. 

II. MATERIALS AND METHODS 

A. System Flowchart 
To exploit RNA-seq accounts associated with differential 

gene expression under different circumstances, more than 
single RNA-seq experimental results should be input for 
comparison. The sequenced reads for transcriptome profiling 
might be obtained from different tissues, different strains, or 
under various environments. The RNA-seq datasets could also 
be obtained at different time points such as various embryonic 
stages or a few hours after drug treatment. An analytical 
system shown in Figure 1 was designed to reveal quantitative 
coverage rates of RNA-seq data and systematic changes 
through novel visualization approaches. The proposed system 
includes 4 major phases: reference mapping, coverage rate 
counting and normalization, functional gene pathway mapping, 
and GO tag cloud visualization. At first, the reads from 
multiple sequenced RNA-seq datasets were mapped to known 
reference genes by any reference mapping tool. A reference 
mapping tool provided details of how each read mapped to the 
known coding regions in a selected target species. According to 
the mapped results, the initiative coverage rates could be 
calculated for each expressed gene. Next, coverage rates were 
normalized to balance the experimental results under different 
conditions in order to eliminate bias caused by different output 
length in total. The derived scores from normalization 
procedures were used as corresponding expression level for 
each gene. After successful retrieval of all gene expression 
scores, active genes would be identified and assigned to 
biological pathways to dynamically display their expression 
differences incorporated with biological functions. Theses 
mapped genes possessing most differential effectiveness 
among all experiments could be selected and clustered 
automatically according to KEGG pathway annotations. 
Besides, the GO term over representation analysis was also 

applied for comparing different gene groups with differential 
gene expression, and the results of major variations were 
displayed by a tag cloud technique. This visualization approach 
could facilitate users in a way of clear and intuitive recognition 
of dynamic status of molecular function regarding the 
differences of function level among various RNA-seq datasets.  

 
Figure 1.  A system flowchart for analyzing multiple sets of RNA-Seq 

accounts. 

B. Reference Mapping and Normalization 
The first step mapped RNA-seq reads to a set of reference 

gene list in advance. The referred gene sequences should 
contain UTR and coding regions only, but not intron segments 
for preventing coverage bias. In this study, we selected 
Ensembl database as the resource of primary gene datasets, 
which provided not only detailed coordinate and annotation 
information, but also corresponding GO information for most 
of collected genes [15]. There were several reference mapping 
tools available from either commercial software or open-source 
projects [16-18]. Most of these tools could generate mapped 
results with SAM/BAM formats, and provided information of 
how reads mapped to the references. The average coverage rate 
or depth for each gene could be counted according to the 
number of accumulated times at each nucleotide position. 
Since the coverage rates were obtained from NGS reads 
directly, coverage between different experiments should be 
normalized to prevent bias caused by the throughput deviation 
from each individual NGS run [19]. According to previous 
reports, one of the normalization methods based on 
housekeeping genes performed better in the benchmark than 
simply utilized the total reads from each experiment [20]. If a 
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set of stable housekeeping genes was available for a specified 
species, the average coverage rate among all housekeeping 
genes could be used as a referencing factor for normalization 
processes. All gene coverage rates were then multiplied by the 
scaling parameter linearly for  read coverage normalization.. 

C. Biological Pathway 
Here we adopted Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway database as the fundamental 
resources for differential gene expression analysis among 
RNA-seq datasets [21]. In each KEGG pathway, a rectangular 
component represents a set of genes or enzymes; a cyclic 
component represents compounds; a linkage regulates genes in 
corresponding metabolic reactions. According to the 
distribution of expression levels normalized from RNA-seq 
coverage, the proposed system colored different levels of 
variation in each component for visualizing distinct gene 
expression. There were 10 levels in variation scores for each 
gene in a pathway map. The level of quantitatively changed 
value for each functional gene was normalized to li according 
to the following equation, where Si was the value of standard 
deviation for the ith node, Smax was the maximum standard 
deviation in a specified KEGG map, and the ZC counts were 
denoted as the number of zero-crossings appeared as the sign 
change of slope value in each specific gene for various RNA-
seq datasets. To obtain ZC, the sign of slope value was 
extracted between two continuous gene expression levels first, 
and then the total number of sign change was counted to 
represent a ZC value. 

�� = ��  × 10 / S����

Hence, all gene boxes within a pathway directly show their 
dynamic change conditions of gene expression according to 
sequenced datasets, and a gene node would be filled with red 
rectangle boxes when its corresponding ZC value was greater 
than 1. Different red layers were selected according to the 
previously defined level li. When the ZC of coverage rate 
distribution within a gene node was equal to 1 from multiple 
datasets, the trend of gene expression would be further 
examined and see if it was strictly increased or decreased. For 
the growing up condition, the gene box was depicted by a blue 
triangle, while growing down situation represented by a green 
triangle. 

D. Gene Ontology 
In order to present functions related with differential 

expression gene set, we employed GO over representation 
analysis to select the representative GO terms automatically. 
Since GO is a hierarchy structured term system, and annotation 
for each child term could be considered the inheritance from its 
parents. Hence, the terms located at higher level always 
possess more common annotated chances for each gene [10]. 
Normalization for each GO term based on the appearance in 
the whole genome set has been applied in order to omit the bias 
from a hierarchical structure of term-level. In GO, annotations 
for each gene marked with the 3-character evidence code, 
which indicated the type of evidence supporting the annotation. 
For example, the evidence code IDA represented the 
annotation supported by Inferred from Direct Assay, and the 
ISS for Inferred from Sequence or Structural Similarity. 
Previous study indicated that evidence code could significantly 

influence the accuracies in a GO-based classifier, and 
suggested to use the computationally predicted annotations 
with caution [22]. Therefore, the GO analysis was frequently 
computed in separation based on different evidence code 
groups. Five evidence code groups according to GO 
consortium including electronic, experimental, computational 
analysis, author statement, and curatorial statement were 
applied and categorized in the proposed system.  

To efficiently identify important GO terms from dynamic 
changes among RNA-seq datasets, the system developed a 
novel tag cloud visualization method for GO variations. To 
generate a tag cloud from identified differential gene 
expression of GO terms, the system assigned size weighting 
coefficients for different GO terms from the mapped gene set. 
The size of a GO term entry in a tag cloud indicated 
quantitative changes among multiple RNA-seq experiments. 
Therefore, a linear accumulation formula was applied for 
weighting coefficient assignment. This formula simply counted 
the differences of coverage rate of a specific gene among 
multiple experimental sets of short reads. According to the 
definitions, if an identified GO term possessed dramatic 
changes in gene expression levels, these terms would be 
defined with a higher weighting coefficient, and the text size of 
the identified term entry in the tag cloud would be drawn 
according to their weighting values. Here, the variant 
weighting scores were initially normalized into 10 different 
levels according to the average distribution. Larger GO terms 
shown in the tag cloud graph represented the GO term 
containing genes with higher gene differential expression. 

III. RESULT 
In this study, we employed a few experimental RNA-seq 

datasets to evaluate our proposed system. The three query 
datasets were collected from NCBI SRA database including: 
“SRP002237”, “SRP005380-DatasetN1”, and “SRP005380-
DatasetN2” [23]. The first SRP002237 dataset included 24 sets 
of RNA-seq experiments and these cDNA datasets were 
sequenced for a study of natural selection on cis- and trans- 
regulation in yeast [24] . Of which 12 datasets were obtained 
from co-culture yeast (run: SRR039256~SRR039267) which 
originated from two strains of S. cerevisiae yeast, another 12 
datasets were obtained from hybrid yeast (run: 
SRR039244~SRR039255) which originated from their hybrid 
offspring (F1 hybrids). The second dataset of “SRP005380-
DatasetN1” contained 4 datasets sequenced at four different 
time points: 0, 1, 2 and 3 hour in meiosis processes, and the 
third dataset of “SRP005380-DatasetN2” included only 2 
datasets sequenced at two different time points: 0 and 4 hour. 
The latter two datasets were used to analyze meiotic diploid of 
S. cerevisiae temporally [25]. Calculation of average coverage 
rates of all yeast genes from these three RNA-seq datasets were 
shown in Table 1. All selected RNA-seq reads were produced 
by Illumina high-throughput sequencing technologies. 

The first step of analytical pipeline mapped short reads to 
the S. cerevisiae genes. Here, we adopted a reference mapping 
tool, CLC Genomic workbench (version 5.1), to obtain aligned 
short reads on reference genes [16]. To successfully utilize the 
data from SRA website, the “fastq-dump” program from SRA 
toolkit was executed to obtain FASTQ sequences. Next, the 
extracted FASTQ reads were imported into the system by 
removing failed reads. After all reads were imported, a “Map 
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Read to References” toolkit from CLC genomic workbench 
was performed for reference mapping. The resulting data 
produced by mapping tool contained the information of 
coverage rate for each aligned gene. It should be noted that the 
reference mapping tools in this step is not necessarily a 
commercial software, and it could be substituted by any open-
source reference mapping tools such as Bowtie or SOAP [17, 
18]. 

TABLE I.  AVERAGE COVERAGE RATE IN DATASETS 

Datasets Average coverage 
rates  

SRP002237  
SRR039244~55 (Hybrid) 24.83 
SRR039256~67 (Co-culture) 25.18 
SRP005380 Dataset-1  
SRR094602_0hr 10.22 
SRR094603_1hr 8.94 
SRR094604_2hr 12.71 
SRR094605_3hr 13.05 
SRP005380 Dataset-2  
SRR094606_0hr 24.29 
SRR094607_4hr 28.79 

 
In the next phase, statistical analysis was performed for 

average coverage rate of each gene, and the normalization 
procedures were carried out by featuring a housekeeping gene 
list. Here we selected 14 genes from the S. cerevisiae 
housekeeping gene TAFs family [26]. Next, according to the 
expression levels from the selected housekeeping genes, 
previously defined biological pathways from KEGG dataset 
[27] and GO term association were automatically evaluated. 
All orthologous genes within a gene node from an identified 
pathway were individually annotated with normalized 
expression level among various RNA-seq datasets. 
Accordingly, these analyzed gene expression levels of all 
mapped genes among various datasets were visually displayed 
through temporal/cross-strains pathway maps and GO tag 
cloud representation. 

For the SRP002237 dataset, there were in total 95 yeast 
KEGG pathway maps identified and retrieved after gene 
clustering procedures. The depth of coverage variation in 
RNA-seq for each gene in an identified pathway map was color 
coded for transforming gene expression quantities into 
systematic visual representation. For example, the pheromone 
signal transfer pathway in the MAPK signaling pathway (Map 
ID: 04011) was shown in Figure 2. The trend of average 
coverage rate for each gene among co-culture and hybrid 
datasets were calculated, and details of individual gene 
expression were statistically shown after clicking on the color 
coded gene boxes. In the statistical plot of expression levels, 
the green bars represented gene expression levels for the first 
co-cultural experimental RNA-seq, and the blue bars showed 
the expression quantities for the second hybrid experiments. To 
easily recognize the trend of differential feature of gene 
expression, an ascending blue triangle within a gene box 
represented the depth of coverage being increased from the 
first experiment to the second one; a descending green triangle 
within a gene box denoted the gene expression levels being 
decreased in an opposite trend. Figure 2 showed that the 
average coverage rate of the Ste2 gene in the co-culture 

experiment was 2083.16 and decreased to an average of 14.08 
for the hybrid experiment. Oppositely, the average coverage of 
Mcm1 gene in co-culture experiment was 94.31 and increased 
to an average of 126.94 for hybrid experiment. With the 
information of coverage rate variations between different 
generations, the developed system could imply differential 
gene expression in a specific biological pathway, which could 
provide useful information for selecting appropriate genes for 
various applications such as cis- and trans- changes in 
regulatory evolution of genes. 

Regarding the same datasets, most GO term variations in 
cellular component category were shown in Figure 3 by a tag 
cloud visualization approach. The larger size symbol of a GO 
term represented its corresponding genes possessing higher 
coverage variation rates among different RNA-seq datasets. 
Here, relatively high RNA-seq coverage variations of the top 4 
GO terms were shown in Figure 4 including nuclear matrix 
(GO:0016363), eukaryotic translation elongation factor 1 
complex (GO:0005853), actin cytoskeleton (GO:0015629), and 
3-isopropylmalate dehydratase complex (GO:0009316). Users 
could click on any GO term on the text cloud to visualize the 
coverage rates among different RNA-seq datasets. 
Corresponding RNA-seq variations of these top ranked 4 GO 
terms were shown in Figure 4. From this example, the gene 
expression levels for the co-culture yeast genes at the GO terms 
of “histone deacetylase complex”, “Set3 complex”, and 
“cytosolic small ribosomal subunit” were significantly higher 
than hybrid yeast by observing bar chart distributions in Figure 
4 (a), (c), and (d). Reversely, the hybrid yeast gene at GO term 
of “eukaryotic translation elongation factor 1 complex” was 
significantly higher than co-culture yeast according to bar 
charts in Figure 4(b). 

The other two yeast RNA-seq datasets of “SRP005380-
DatasetN1” and “SRP005380-DatasetN2” were applied for 
temporal pathway analysis. In these two testing cases, there 
were also 95 yeast KEGG pathways identified and retrieved 
through gene mapping and identification processes. The data 
visualization method was exactly the same as described in the 
previous case. The “SRP005380_N1” dataset contained 4 
RNA-seq datasets which were sequenced at each hour, and 

SRP005380_N1” contained only two datasets which were 
sequenced at two time points with 4 hour difference. From the 
comparison results of both datasets, several mapped pathways 
provided differential gene expression at significant levels. For 
example, both datasets reflected higher differential gene 
expression rates in meiotic pathway map (ID:04113). Figure 
5(a) represented the meiosis yeast pathway map for 
SRP005380_N1 and Figure 5(b) for SRP005380_N2. It was 
observed that gene of Mej1 possessed common status of 
decreased gene expression within these two datasets and gene 
of Glc7 for increased conditions simultaneously. In addition to 
the temporal pathway analysis for these two RNA-seq datasets, 
associated GO term analysis was also performed.  The 
coverage accounts of different time points for each gene and its 
associated GO terms were accumulated and compared for 
temporal GO term variation analysis. For example, the GO 
term of “GO:0005737” (cytoplasm), GO:0016020” 
(membrane), GO: 0005634” (nucleus) at Cellular 
Component (CC) level revealed with higher gene expression 
variations than other GO terms. 
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Figure 2.  Variations of gene coverage rate in MAPK signaling pathway (Map ID:04011) from SRP002237 RNA-seq datasets. System responded the comparative 

results between two different experimental datasets. 

 

Figure 3.  GO term variations associated with cellular component (CC) in 
electronic evidence codes for SRP002237. The differences of average 
coverage rate between two experiments were more than 100 units, and the 
variations were normalized to show in tag cloud representation.  

 

Figure 4.  Top 4 variation of GO terms with CC in IEA of SRP002237: (a) 
GO:0016363, (b) GO:0005853, (c) GO:0015629, and (d) GO:0009316. 

IV. CONCLUSION 
In this study, we have proposed a workflow of differential 

gene expression for cross-strains or temporally separated RNA-
seq datasets. The system mapped short reads to reference genes 
and measured gene expression level quantitatively through a 
normalized procedure. Accordingly, the KEGG pathway 
database was integrated for selecting a group of functional  

  
Figure 5. Meiosis yeast pathway maps (MAP:04113) with gene expression 
indication for (a) SRP005380_N1 and (b)  SRP005380_N2. Mek1 gene for 
decreasing gene expression and GLC7 gene for increasing status in both 
RNA-seq datasets of Meiosis experiments. 

associated genes and to display various levels of differential 
gene expression regarding biological functional variation. The 
tag cloud representation for GO annotation with selectable 
evidence code consideration was also applied for visualizing 
functional conservation within highly dynamic expression 
genes. We employed public available RNA-seq reads as testing 
datasets to demonstrate the workflow could clearly indicate 
how differential gene expressions were connected to the 
biological function levels. This workflow can be applied under 
various experiment conditions invoked with different gene 
expression, and it is useful for further detailed experiment 
design. 
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