
Application of Granger Causality to Gene Regulatory 

Network Discovery 
 

Gary Hak Fui Tam, Chunqi Chang, and Yeung Sam Hung 

Department of Electrical and Electronic Engineering 

The University of Hong Kong 

Hong Kong 

hftam@eee.hku.hk, cqchang@eee.hku.hk, and yshung@eee.hku.hk 

 

 
Abstract—Granger causality (GC) has been applied to gene 

regulatory network discovery using DNA microarray time-series 

data. Since the number of genes is much larger than the data 

length, a full model cannot be applied in a straightforward 

manner, hence GC is often applied to genes pairwisely. In this 

paper, firstly we investigate with synthetic data and point out 

how spurious causalities (false discoveries) may emerge in 

pairwise GC detection. In addition, spurious causalities may also 

arise if the order of the vector autoregressive model is not high 

enough. Therefore, besides using a suitable model order, we 

recommend a full model over pairwise GC. This is possible if 

pairwise GC is first used to identify a network of interactions 

among only a few genes, and then all these interactions are 

validated with a full model again. If a full model is not possible, 

we recommend using model validation techniques to remove 

spurious discoveries. Secondly, we apply pairwise GC with model 

validation to a real dataset (HeLa). To estimate the model order, 

the Akaike information criterion is found to be more suitable 

than the Bayesian information criterion. Degree distribution and 

network hubs are obtained and compared with previous 

publications. The hubs tend to act as sources of interactions 

rather than receivers of interactions. 

Keywords-Granger causality, gene regulatory network, DNA 

microarray,  pairwise,  spurious discovery,  model validation. 

I.  INTRODUCTION 

Gene regulatory network (GRN) discovery is a hot research 
topic. It identifies gene-gene interactions from mRNA 
experiment data to help elucidate biological process in disease 

development, hence promoting medical advances [1][4]. 
Recently, Granger causality (GC) has been applied to GRN 
discovery using DNA microarray time-series data, e.g. [5], [6]. 
However, due to the curse of dimensionality, i.e. the number of 
genes is much larger than the data length, a full model cannot 
be applied to all genes simultaneously, and thus GC is often 
applied to genes pairwisely. For example, [5] and [6] used a 
low model order of one only, which we doubt is not sufficient. 
In this paper, first we investigate the effects of applying GC 
pairwisely and the choice of model order. We would also like 
to see if model validation techniques provided by Granger 
causal connectivity analysis (GCCA) toolbox [7] can help in 
the above situations. Since ground truth network is usually 
unknown for real data, we adopt synthetic data for the purpose 
of conducting a more reliable evaluation. Secondly, we apply 

pairwise GC with model validation to a real dataset and 
compare results with previous publications. 

II. GRANGER CAUSALITY 

Granger causality (GC) [8] is well suited for identifying 
causal relations among multiple time series, hence we adopt it 
for our GRN discovery. 

A. Definition of Granger Causality 

Suppose there are two time series X and Y, if Y can help 
predicting the future of X, then Y “Granger-causes” X. This 
means that, including past observations of Y can reduce the 
prediction error of X, compared to the prediction made using 
past observations of X only. 

B. Bivariate and Multivariate Autoregressive Models 

Vector autoregressive (VAR) model is often used to detect 
GC. 

1. Bivariate autoregressive model 

First, consider a system with two variables x1 and x2, with 
measurements constituting two time series both of data length 
T. Denoting their measurements at time t by x1,t and x2,t 
(t=1,2,…,T), respectively, the system can be modeled by a 
bivariate autoregressive model: 
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where p is the model order, which is the number of time lag to 
be included in the model. Coefficients of the model can be 
collectively denoted as 
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e1,t and e2,t represent residuals (prediction errors) of the two 
time series. 
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Since Tpt ,,1  for (1), the bivariate model (1) 

represents pTm   pairs of equations. Using matrix notation 

and taking transpose, these equations can be stacked and 
written in the form of standard linear regression: 

 EXBY   

where 
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The coefficient matrix B can be estimated by ordinary least 
squares (OLS):  

   YXXXB 
1ˆ  

provided that that XX is invertible. Then, the prediction error 
of x1 can be measured by the residual sum of squares (RSS): 

     ˆˆRSS1 XyXy 


  

where y and ̂  are the 1st column of Y and B̂ , respectively. 

To detect if x2 Granger-causes x1, the above regression 
procedure is repeated by removing x2. i.e. prediction of x1 is 
made using past observations of x1 only:  
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The RSS of x1 obtained by regression without x2 (restricted 
model) is denoted by RSS21. Since RSS1 denotes RSS of 
unrestricted model, where both x1 and x2 are included, the F 
statistic can be constructed as [9], [10]: 
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Under the null hypothesis that x2 does not Granger-cause x1, 
which is equivalent to A12,l being all zero, the F statistic has a 
F(p,m–2p) distribution, so the corresponding p-value can be 
calculated. If RSS1 is much smaller than RSS21, (5) yields a 
large F value, so resulting in a small p-value, in which case a 
significant GC is detected and we can conclude that x2 
Granger-causes x1. 

Similarly, to see if x1 Granger-causes x2, the 
aforementioned routine can be repeated by exchanging the 
roles of x1 and x2. 

2. Multivariate autoregressive model 

GC can be extended to multivariate case [4], [7], where the 

number of variables of the system n3. Suppose there are n 
time series. If including the history of variable j reduces the 
prediction error of variable i, compared to exclusion of variable 
j, with series of all other variables always included in the 
prediction model, then variable j Granger-causes variable i. 
Notice that the detection of causality is conditioned on all other 
series, hence it is also called conditional GC (CGC). Analogous 
to bivariate case, we can write out the procedure of CGC 
explicitly as follows. 

Suppose n variables are measured at T time instants. Let an 

n1 vector xt denote the measurements at time t, the VAR 
model of order p can be expressed as 
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where Al is an nn coefficient matrix containing parameters of 

the VAR model, and et is a n1 error vector containing 
residuals (prediction errors). 

Taking transpose of the pTm   equations in (6) and 

then stacking them, (6) can be written in the form of standard 
linear regression: 
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The coefficient matrix B can be estimated by OLS, 

provided that npm   so XX is invertible:  
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 YXXXB  1)(ˆ  

Then, the prediction error of variable i can be measured by 
RSS: 

     ˆˆRSS XyXyi 


  

where y and ̂  are the i-th column of Y and B̂ , respectively.  

To detect if there is GC from variable j to variable i, we 
remove variable j and repeat the above linear regression with 
n–1 variables to get the RSS of variable i of this restricted 
model – denoted RSSji. The F statistic can be constructed as: 
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Under the null hypothesis that variable j does not Granger-
cause variable i, the F statistic has a ),( npmpF   distribution, 

then p-value can be calculated. 

For the purpose of GRN discovery, we calculate the F 
statistics of all )1(  nnM  combinations of directed variable 

pair j to i, so the p-values of all possible edges of the n-variable 
network are obtained.  

C. Conditional and Pairwise GC 

For a system of n variables, to detect GC from variable j to 
variable i, if conditional GC (CGC) is applied to all variables 
simultaneously, this is a full model application, where only one 
coefficient matrix B for unrestricted model is estimated.  

However, in GRN discovery using DNA microarray time-
series data, the number of variables (genes) is much larger than 
the data length. A full model cannot be applied to all genes 
simultaneously because the condition npm   for OLS is 

usually violated. Therefore, bivariate autoregressive model is 
often applied to the n genes pairwisely. i.e. to detect if gene j 
Granger-causes gene i, the procedure described in “bivariate 
autoregressive model” above is executed using time series of 
genes i and j only. To find p-values of all )1(  nnM  

possible edges of the n-gene network, totally 2/)1( nn  

coefficient matrices B for unrestricted models are estimated 
because there are totally 2/)1( nn  pairs of genes {i,j}. We 

call this implementation pairwise GC (PGC). 

D. Correction to Multiple Testing 

Both CGC and PGC return )1(  nnM  p-values for an n-

variable network. The M hypothesis tests for GC detection 
need correction and there are mainly two approaches [7]: 
Bonferroni correction and Benjamini-Hochberg false discovery 
rate (FDR) controlling procedure [11].  

The Bonferroni approach is also known as controlling the 
family-wise error rate. If there are M tests, to discover a 

network at a significance level , each individual test should be 

executed at level /M. i.e. only those causalities having p-

values  /M are considered as significant and included as 
edges in the discovered network. Using Bonferroni correction, 
the probability of having one or more false positives is 

controlled at  [11]. In this paper, for the purpose of 
minimizing spurious causalities (false positives), we adopt the 

stricter Bonferroni correction with =0.05 for simulations 
using synthetic data (Section III).  

The Benjamini-Hochberg FDR controlling procedure [11] 
is described as follows. Suppose we need to test M null 
hypotheses H1, H2, …, HM with corresponding p-values p1, 

p2, …, pM. Let 
)()2()1( Mppp    be the ordered p-values, 

and denote H(i) to be the null hypothesis corresponding to p(i). 
To control FDR at q: if K is the largest i that  

 q
M

i
p i )(
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then reject all H(i) where i = 1, 2, …, K. In other words, the 
FDR of these K discoveries is q. In this paper, to compare 
results with previous publications, we adopt this FDR 
controlling procedure with q=0.05 in real data application 
(Section IV).  

E. Model Validation 

If a VAR model does not adapt to the data well, 
correlations between the variables cannot be captured properly, 
implying that the GC detected is not reliable. The GCCA 
toolbox offers three implementations to check if a model is 
valid [7]: 

1. Model consistency: to measure if a VAR model can 
capture the correlation structure of the data sufficiently. 
Consistency is computed as: 
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where Ri and Rp are reshaped row vectors (of length n
2
) from 

covariance matrices of input time series and predicted time 
series by the VAR model, respectively. We take the 80% 
threshold suggested by Seth [7] and treat a model with lower 
consistency as invalid. 

2. Adjusted RSS: in GCCA, the adjusted RSS of variable i 
is calculated as:  


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In (12), the numerator is the estimated variance of prediction 
errors and the denominator is the variance of input data. Thus 

i measures the amount of input data captured by the model. 

We require i of all variables  0.3 for a model to pass this 
validation. 

3. The Durbin-Watson test (whiteness test): to test if the 
residuals are serially uncorrelated. GCCA has implemented the 
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procedure in [12]. We follow the default setting of GCCA to 
use Bonferroni correction at significant level 0.05 for this 
whiteness test, too. 

III. SIMULATION RESULTS 

Our simulations are carried out using the GCCA toolbox 
[7]. Consider a 3-variable model used in [13] (i.e. n=3): 
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where t, t and t are independent Gaussian white noise 
processes of zero mean and unit variance. Initial values of X, Y 

and Z have the same nature as ,  and . Model (13) has 2 

causal inferences “ZX” and “YZ”. After simulations using 
(13), we drop the first 100 time points which are transient and 
take the subsequent 200 time points as our synthetic data, i.e. 
T=200. Applying CGC to these 3 time series with model order 
p=2, a discovered network of 2 edges is obtained. Fig. 1(a) 
shows this discovered network, we can see this CGC recovers 
the 2 causal inferences in model (13) exactly. 
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Figure 1.  Discovered networks on the 3-variable model. Solid black arrows 

represent true positives, dashed red arrows represent false positives. 

A. False Discoveries in Pairwise GC 

Using the same synthetic data generated above, if PGC with 
p=2 is applied, a discovered network of 3 edges is obtained, 

which is shown in Fig. 1(b). The spurious edge “YX” is a 
false discovery. It comes from the bivariate modeling on time 
series X and Y only. Since including Y helps to predict X, a 
causal inference from Y to X is detected. However, we know 
that this is actually an indirect inference through Z. Compare 

Fig. 1(a) obtained by CGC, where the inference “YX” is 
tested by conditioning on Z (i.e. Z is included in the regression 
model). Since Z already helps predicting X, including Y does 

not help any more, CGC does not identify “YX” as a causal 
inference. In short, CGC can distinguish direct and indirect 
inferences, but PGC cannot, resulting in false discoveries.  

B. False Discoveries in Conditional GC if Model Order is 

Not High Enough 

Using the same synthetic data as before, if CGC with p=1 is 
applied, the discovered network also has false discovery, as 

shown in Fig. 1(c). This time, a spurious edge “ZY” exists, 
which can be explained by Fig. 2. Solid arrows mark the true 
inferences. However, if the VAR model does not have time lag 
= 2 part, as crossed out by dashed lines in Fig. 2, since Zt–1 

contains information of Yt–2, and Yt–2 helps predicting Yt, these 

imply Zt–1 helps predicting Yt. Hence, spurious edge “ZY” 
appears. 

A closer examination of model (13) and applying the same 

argument as above, the edge “XZ” should also appear in Fig. 
1(c). Indeed, we observe that if data length T=1000, this edge 
also appears because a longer data length has higher statistical 

power. Since the spurious feedback causality “XZ” is 
relatively weaker, it is not identified as a significant causality 
when T=200. In short, using an inappropriately low model 
order can easily make acyclic system appear as cyclic. 

Nevertheless, even we use a long T=1000, figures 1(a) and 
1(b) still remain the same as T=200. On the other hand, if CGC 
of p=3 is applied, the discovered network is the same as p=2 in 
Fig. 1(a). 

Yt2 Yt1 Yt

Zt2 Zt1 Zt

Yt2 Yt1 Yt

Zt2 Zt1 Zt

Yt2 Yt1 YtYt2Yt2 Yt1Yt1 YtYt

Zt2 Zt1 ZtZt2Zt2 Zt1Zt1 ZtZt

 

Figure 2.  Arising of spurious feedback causality. Solid black arrows 

represent true inferences, dashed red arrow indicates spurious inference. 

C. Reducing False Discoveries in PGC by Model Validation 

For the purpose of investigating PGC more clearly, a 5-
variable model is adopted in this sub-section such that more 
pairs of variables are available. We follow the 5-variable model 
used in [7] and [14]: 
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where wi and initial values of xi (i=1,2,3,4,5) are independent 
Gaussian white noise processes of zero mean and unit variance. 
Similar as before, the first 100 time points are dropped and 
subsequent 200 time points are taken as our synthetic data. i.e. 
now T=200, n=5. The total number of all possible edges is 

20)1(  nnM . The model (14) has order p=3. Applying 

CGC to synthetic data with model order p=3 completely 
recovers the ground truth network, which is shown in Fig. 3(a).  
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(e) PGC, p=2
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(h) PGC, p=1
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Figure 3.  Discovered networks on the 5-variable model. Solid black arrows 

represent true positives, dashed red arrows represent false positives. 

Before moving to PGC, let us introduce some measures on 
discovered network. Suppose a discovered network has H 
edges, e of them are true positives (TP) and the rest are false 
positives (FP). Then, precision HeP /  and false discovery 

rate PHeHQ  1/)( . Denote the number of edges of 

the ground truth network by L, then recall LeR / , the 

harmonic mean between P and R is )/(21 RPPRF  . A good 

discovered network should have high P and R, and thus also F1, 
implying that Q should be low. As an example, the 5-variable 
model (14) has L=5. The discovered network in Fig. 3(a) has 
H=5 and e=5, so P=R=F1=1 and Q=0, hence it is a perfect 
discovered network.  

Now, we apply PGC to the synthetic data. The total number 
of variable pairs {i,j} is 102/)1( nn , so totally 10 bivariate 

models should be applied. We try p=3,2,1 and results are 
shown in Table I. We can see PGC without model validation 
performs badly. H is much larger than L, meaning that many 
spurious edges exist. The middle part of Table I shows how 
many unrestricted models pass validation. CGC has one 
unrestricted model only and it passes all validation tests, so 
using validation or not makes no difference on its results. PGC 
has 10 unrestricted models, some models fit well thus pass 
validation, but some are not, hence using validation makes a 
difference.  

Take p=2 row as an example, without validation, 16 edges 
out of 20 are detected as significant, but we know most of them 

are spurious. Applying validation, only 0.410=4 unrestricted 

models can pass all the three tests. That means only 42=8 
candidate edges are considered in significance test subject to 

Bonferroni correction, where p-values  /8 are considered as 
significant. It turns out only 4 edges out of 8 are significant. 
They are shown in Fig. 3(f). Now, only 1 edge is false, giving 
Q=0.25 which is much lower than Q=0.69 without validation.  

Similar observation can be seen at PGC p=3 row. Since 
results without validation are not so bad as p=2, improvement 
made by validation is relatively smaller. For p=1, no model can 
pass all the three validation tests. That means model order 1 is 
too low that all the 10 bivariate models cannot fit well with the 
data, thus there is no discovery (H=0). Higher p should be used 
for valid discovery. 

 

TABLE I.  PERFORMANCE OF CGC AND PGC ON THE 5-VARIABLE SYNTHETIC DATA 

  Consa (%)  Without Validation Proportion Passing Validationc With Validation Improvementf 

 p mean SD
b
 H F1 Q Cons Adj. RSS

d
 Whiteness All 3

e
 H F1 Q F1 Q 

CGC 3 91 0 5 1 0 1 1 1 1 5 1 0 --- --- 

PGC 

3 74 17 12 0.59 0.58 0.4 1 1 0.4 4 0.67 0.25 0.08 0.33 

2 70 20 16 0.48 0.69 0.4 1 0.7 0.4 4 0.67 0.25 0.19 0.44 

1 52 16 16 0.48 0.69 0 0.5 0.2 0 0 --- --- --- --- 

a. model consistency (total number of unrestricted models are 1 and 10 for CGC and PGC, respectively); b. standard deviation; c. proportion passing validation = (number of unrestricted models passing validation) / 

(total number of unrestricted models); d. Adjusted RSS; e. all the 3 validation tests; f. improvement (in F1 or Q) by validation in PGC case, measured in magnitude. 

 

Fig. 3 shows all 8 discovered networks corresponding to 
Table I. In short, these results show that PGC may have many 

false discoveries, and these false discoveries can be 
substantially reduced by model validation. 

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

236 Xi’an, China, August 18–20, 2012



In real data application, if PGC can identify a network of 
inferences among a small number (say n) of gene for which the 
condition npm   for OLS can be met, all these inferences can 

be validated again by applying CGC to the n genes, hence false 
discoveries can be further minimized.  

IV. APPLICATION OF PAIRWISE GC TO REAL DATA 

When applying GC to real data from DNA microarray 
experiment, the model order p can be estimated by the Akaike 
information criterion (AIC) [15] or the Bayesian information 
criterion (BIC) [16]. Publications [5] and [6] have applied PGC 
with p=1 to the HeLa cell-cycle dataset [17]. From previous 
investigation using synthetic data, we doubt if p=1 is sufficient. 
Thus, we estimate the model order p first. 

A. Estimating the Model Order by AIC and BIC 

Experiment 3 of the HeLa dataset have the longest time 
series and all time points are equally spaced, so many people 
have applied GC on data of this experiment. Reference [17] 
identified 1134 periodic genes, 1099 of them do not have 
missing values and we focus our study on these 1099 genes 
(same as [6]). Experiment 3 has time points t=0,0,1,2,3,…,46. 
For each gene, we average the two measurements of t=0. 
Similar to [5] and [6], we have not executed any other trend 
removal or pre-processing that may distort the data. Now, 
n=1099 and T=47, obviously CGC cannot be applied on all 
genes simultaneously, hence PGC is used.  

For the 1099 genes, the total number of gene pairs is 

6033512/)1( nn , so totally 603351 bivariate models are 

applied. For each pair, equivalently each bivariate model, we 
estimate the model order p by AIC and BIC giving candidate 
p=1,2,3,4,5. For comparison, bivariate models with fixed 
p=1,2,3 are also implemented. For each case above, one row in 
Table II shows the results of the 603351 bivariate models.  
Distributions of the 603351 model orders estimated by AIC 
and BIC are shown in Fig. 4. We can see AIC generally returns 
higher model orders than BIC. From Table II, the proportion of 
bivariate models passing all the 3 validation tests is 9.0%, 

which is the highest among the five cases. So, model orders 
estimated by AIC are the most suitable. Note that though BIC 
gives a mean model order 1.6 which is lower than p=2, BIC 
still has much more bivariate models (5.3%) passing all the 3 
validation tests than p=2 case (2.6%), meaning than using BIC 
is still much better than fixing p=2 for all gene pairs.  

TABLE II.  DIFFERENT CASES OF FIXING THE MODEL ORDER 

 Model Order  Consa (%) Proportion Passing Validation (%)c 

 Mean SD
b
 Mean SD Cons Adj. RSS

d
 Whiteness All 3

e
 

AIC 3.3 1.5 51 23 12.9 99.7 37.4 9.0 

BIC 1.6 1.0 43 23 7.4 98.7 30.3 5.3 

p=3 3 0 48 21 8.1 99.2 32.3 5.5 

p=2 2 0 44 19 4.0 97.6 29.6 2.6 

p=1 1 0 39 20 1.1 93.9 22.7 0.6 

a. model consistency; b. standard deviation; c. proportion passing validation in % = (number of bivariate 

models passing validation) / (total number of bivariate models)  100%; d. Adjusted RSS; e. all the 3 

validation tests. 

B. Results from AIC and Model Validation 

Since AIC is the most suitable, we further analyze its 
results. Its 9.0% bivariate models passing all the 3 validation 
tests correspond to 54376 gene pairs. That means we need to 

test 543762=108752 null hypotheses. Similar to [5] and [6], 
we also apply Benjamini-Hochberg FDR controlling procedure 
with q=0.05 for the multiple testing. The corrected threshold 
for p-value is 0.015, and 33601 causalities are found to be 
significant. 

Before proceeding, let us introduce degree distribution 
which is a useful illustration in gene network study. In a 
network, the in-degree of a gene is the number of edges 
pointing into it and the out-degree is the number of edges going 
out of it. The degree of a gene is the sum of its in-degree and 
out-degree [18]. For a large discovered network that cannot be 
drawn as Fig. 1 and Fig. 3, the distribution of the (in-/out-) 
degrees of all the genes in the network can be plotted.  

 

      (a) AIC      (b) BIC 

         

Figure 4.  Distributions of the model orders estimated by AIC and BIC. 

Regarding the 54376 gene pairs, 29882 pairs are detected to 
have significant GC, where 3719 pairs (12% of 29882) have 
cyclic GC. These are consistent with the 33601 edges 

(causalities) of the discovered network. Among the 1099 genes, 
968 genes have in-degree > 0 and 826 genes have out-degree > 
0. The union set involves 986 genes, which is the set of genes 
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having degree > 0. The degree distributions of the 986 genes 
are plotted in Fig. 5, which shows similar decaying trend as in 
[5] and [6]. Compare the skewness and kurtosis of Fig. 5 (a) 
and (b) with [6], they are comparable to that of [6] for in-
degree but much larger for out-degree.  

Table III shows the top 10 genes with maximum (in-/out-) 
degrees corresponding to the three cases in Fig. 5. The hubs 
with highest degrees shown in Table III(c) generally have 

higher out-degrees than in-degrees, meaning that the hubs tend 
to act as sources of interactions rather than receivers of 
interactions. Compare Table III (a) and (b) with [6], our top 10 
genes do not overlap with [6]. On the other hand, 5 out of the 
10 genes in Table III(c) overlap with [19], which implemented 
their grouped graphical Granger modeling on the HeLa dataset. 
These 5 genes are: 5.CDC2, 23.KNSL5, 26.CDC2, 
42.DJ616B8.3 and 87.USF1. 

 

 

Figure 5.  Degree distributions of the 986 genes involved in significant causalities. Excess kurtosis = kurtosis – 3. So, skewness and excess kurtosis are both zero 

for Gaussian distribution. 

TABLE III.  TOP 10 GENES WITH MAXIMUM (IN-/OUT-) DEGREES. 

(a) In-degree 

In-degree Gene name 

238 333.MCM6 

232 257.ESTs 

211 5.CDC2 

202 73.TTK 

180 26.CDC2 

178 190.MDS025 

165 100.ESTs 

161 68.SMAP 

160 66.CKAP2 

155 203.TUBB2 

(b) Out-degree 

Out-degree Gene name 

480 5.CDC2 

480 47.KPNA2 

461 42.DJ616B8.3 

452 87.USF1 

447 3.UBE2C 

447 26.CDC2 

445 20.STK15 

445 22.UBE2C 

430 10.FLJ10468 

426 16.TOP2A 

(c) Degree 

Degree Gene name 

691 5.CDC2 

627 26.CDC2 

572 3.UBE2C 

562 6.TOP2A 

552 47.KPNA2 

546 23.KNSL5 

545 42.DJ616B8.3 

532 22.UBE2C 

521 87.USF1 

515 11.CCNF 

The number in front of each gene name is the row number in the data file dataPlusScores_all5.txt downloaded at the web link shown in the abstract of [17]. 

 

V. DISCUSSION 

Some readers may think that the condition npm   for 

solving (7) by OLS is too strict. Actually, if this condition is 
not satisfied, (7) can be solved by regularization techniques [4] 

[20]. However, rigorous and practical statistical tests on that 
aspect are still needed to be developed. Our preliminary study 
(not shown here) reveals that if the condition npm   can be 

met for a small network, OLS will give better performance than 
regularization because regularization usually imposes bias [4], 
[20]. Thus, here we choose to report our results obtained by 
OLS first. Different GC implementations (including 

(a) In-degree: skewness = 1.7, excess kurtosis = 3.7 

(c) Degree: skewness = 2.8, excess kurtosis = 8.2 

(b) Out-degree: skewness = 3.5, excess kurtosis = 11.9 
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regularization) will be investigated later. Their comparisons 
with other GRN discovery methods (e.g. Bayesian networks, 

mutual information approaches) [2][4] are also our future 
work.  

Our synthetic data simulations use data length T=200, 
which is much longer than T=47 in real data. It is because the 
plots of the time series generated by models (13) and (14) look 
like noises. If T is 50 or 100, the statistical power yielded by 
these synthetic data is too low that sometimes true causalities 
cannot be detected, which makes our investigation difficult. 
However, for the real dataset HeLa, the genes exhibit periodic 
patterns, causalities can be detected more easily though they 
are shorter.  

On the other hand, real data of T100 is not impossible, 
since many studies carry out multiple experiments, e.g. [17] 
have done 5 experiments. These experiments may be used 

together such that the total number of time points can be  100. 
However, integrating multiple time series is not a trivial task, 
and we have started research on this topic. 

VI. CONCLUSIONS 

Using synthetic data, we have shown that false discoveries 
easily arise in pairwise GC implementation, where indirect 
inferences are often mistakenly taken as direct inferences. Even 
in full model (CGC) application, if the model order is not 
sufficiently high, false discoveries may cause acyclic system to 
appear as cyclic. To remedy these problems, we have 
demonstrated that model validation can effectively reduce the 
number of false discoveries. We also recommend using full 
model instead of pairwise GC if possible.  

The application of pairwise GC to the HeLa dataset shows 
that AIC is better than BIC in estimating the model order, in 
the sense that AIC leads more bivariate models passing all the 
3 validation tests. With model validation, degree distributions 
of the discovered network show similar decaying trends as 
previous publications. Network hubs tend to act as sources of 
interactions rather than receivers of interactions. 

We have also discussed a few related issues and mentioned 
future work. 
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