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Abstract—MicroRNA (miRNA in short) is a kind of small
RNAs that acts as an important post-transcriptional regulator
with the Argonaute family of proteins to regulate target mRNAs
in animals and plants etc. Since its first recognition as a
distinct class of small RNA molecules in the early 1990s, tens
of thousands of miRNAs have been identified experimentally or
computationally. Currently, the focus of miRNAs study is on
single-miRNA functions that usually result in gene silencing and
repression. With the rapid increase of miRNAs, biologists have
manually organized these miRNAs into biologically meaningful
families to facilitate further study. As the members in the same
family tend to share similar biochemical functions, a high quality
family organization will shed lights on the functions of unknown
miRNAs. However, manually grouping large amounts of miRNAs
is not only time-consuming but also expensive. In this paper, we
employ a clustering method with N-grams and feature weighting
to automatically group miRNAs into separate clusters (families).
Our method is evaluated with datasets constructed from the
online miRNA database miRBase. Experimental results show that
the clustering method can successfully distinguishes most miRNA
families, and outperforms the traditional K-means clustering
algorithm and the average-link clustering approach.
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I. INTRODUCTION

MicroRNAs (miRNAs in short) are an important category
of endogenous small noncoding RNAs (20-30 nt) existing
in eukaryotic cells and viruses, and play important gene-
regulatory roles by pairing to the messenger RNAs (mRNAs in
short) to direct their post-transcriptional repression [1]. They
serve as specificity factors that direct bound effector proteins,
of which the core component is a member of the Argonaute
protein superfamily, to target nucleic acid molecules via base-
pairing interactions [2]. The first two miRNAs, expressed by
lin-4 and let-7 genes in the worm Caenorhabditis elegans,
were discovered in 1993 [3] and 2000 [4], respectively. Since
then, tens of thousands of miRNAs were found in plants,
animals, metazoans and viruses etc. For example, in the
most authoritative online miRNA database miRBase [5], [6],
[7], [8], there are now 18,226 entries representing hairpin
precursors, which express 21,643 mature miRNAs distributed
over 168 species (release 181). By far, over 75% miRNAs
registered in miRBase have been grouped into families, and

1available at: http://www.mirbase.org/

members in the same family may have similar biological func-
tions. To construct miRNA families, current semi-automated
methods have been found difficult to keep up with the pace of
miRNA discovery. In order to overcome this problem, machine
learning based methods are introduced recently. Ding et al.
proposed an automatic alignment free method for miRNA
classification — miRFam [9], which was based on N-gram [10]
represented miRNA sequences and a multiclass SVM. This
method is both effective and efficient. However, since it is
a supervised method, predefined family structure and labeled
miRNA sequences are required for training the classifier.

In this study, we employ an unsupervised learning method
to automatically group large amounts of miRNAs. The basic
idea of this method is an improved K-means clustering
approach with an adaptive feature weighting mechanism. Ex-
periments over several datasets demonstrate the effectiveness
and efficiency of the proposed approach, which significantly
outperforms the traditional K-means clustering approach and
the average-link clustering approach.

II. RESULTS

We implemented our approach based on the SKWIC cluster-
ing algorithm [11], which is an improved K-means algorithm
with simultaneous keyword identification and clustering for
documents clustering, to unsupervisedly classify miRNAs in
the miRNA database miRBase.

The overall procedure of our approach is as follows. Firstly,
we transform the miRNA primary sequences into vectors,
each dimension of the vectors corresponds to one feature
of the sequences. This phase is called feature extraction.
Here, N-grams [10] are used for extracting features from the
miRNA primary sequences. After extracting N-grams from
each miRNA sequence, a weighting method called concentra-
tion factor [9] is introduced to weight these N-grams. The de-
tail of feature extraction will be presented in the Materials and
Methods section. Secondly, we adopt the SKWIC algorithm to
cluster these transformed miRNA vectors. SKWIC is a variant
of the classic K-means clustering algorithm and has the ability
to simultaneously weight the features of each cluster on the
fly and assign each data point to the nearest cluster according
to the weighted distances between the point and the centroids
of all clusters. SKWIC was initially developed for document
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clustering analysis. Here we employ it for miRNA sequences
clustering. The details of SKWIC algorithm are also given later
in the Materials and Methods section. Finally, we evaluate the
proposed approach with several datasets from miRBase, and
compare the clustering results with the families of miRBase.

Here, we conduct two experiments. The first experiment is
to test our approach over a dataset extracted from miRBase16
and evaluate its clustering performance; The second experi-
ment is to apply our approach to real unclassified miRNA
sequences (those are not assigned to any predefined family)
extracted from miRBase18 to validate the prediction capability
of our approach. For convenience, the dataset extracted from
miRBase16 is denoted as R1, and another dataset extracted
from miRBase18 is denoted as R2. The details of these two
datasets are shown in Table I.

A. Clustering Result on Dataset R1

Here, we use dataset R1 constructed from miRBase16 as the
base test dataset to evaluate the clustering performance of our
approach. In miRBase16, there are over 17,000 distinct mature
miRNA sequences, all of which belong to four biological
categories — animals, plants, viruses and chromalveolata. In
this study, we choose miRNAs in the families that have no less
than five members. The families with less than five members
are too small and tend to misleading the clustering algorithm,
hence are discarded. Since there are only 33 families of viruses
and 1 family of chromalveolata in miRbase16, and 31 of
the 32 families of viruses and the only one chromalveolata
miRNA family have less than five members, all of these two
species’ miRNAs are excluded in our experiment. Of course,
those miRNAs without family information are also ignored.
As a result, we consider only miRNAs in animals and plants
organisms in miRBase16. The final dataset R1 contains 9,225
mature miRNA primary sequences. These 9,225 miRNAs
belong to 394 families, among which 319 families are of
animals. The largest three families are let-7 , mir-17 and mir-
154 , which are all animal miRNA families and have 195, 175
and 169 members, respectively. Because the families of all of
these miRNAs are already known, we can effectively evaluate
the clustering performance of our approach.

Each mature miRNA sequence is transformed to a vector of
340 dimensions. The first 4 dimensions represent 4 unigrams
A, G, C and U, followed by 16 bigrams AA, AG, AC, AU, GA,
GG, GC, GU, etc., then 64 trigrams AAA, AAG, AAC, AAU,
etc., and finally 256 tetragrams AAAA, AAAG, AAAC, AAAU,
etc. Note that all of these 340 dimensions have been weighted
by concentration factors.

Once we have the collection of miRNA vectors, the SKWIC
clustering method is applied to these miRNA sequence vectors.
Since SKWIC is based on the K-means method, the number K
of clusters should be determined beforehand. It is reasonable
to group the miRNAs into the same number of clusters as
the number of families, i.e., 394 clusters. However, there are
many small families, and miRNAs in these small families
are likely to be merged into other larger families. This might
cause the degradation of clustering results. So, we also choose

some other numbers of clusters larger than 394, that is, 472,
550, 628, 706 and 784. The last number is nearly twice
as the number of families. On the other hand, due to the
randomness of SKWIC’s initial cluster centroids, we perform
the experiment 20 times for each cluster number to eliminate
this randomness.

To evaluate our approach, we adopt two performance mea-
surements — the vote strategy and the Davies-Bouldin index
. The vote strategy is a validation measurement based on the
clustering accuracy. It is calculated from the confusion matrix
of the clustering result. It counts the largest family in each
cluster, and the second largest family if the number of miRNAs
of the second largest family in this cluster is no less than 1/3
of the number of miRNAs in the largest family. The reason
for taking the second largest family in a cluster as correctly
clustered is that some families of miRNAs are very alike so
that sequences in these families tend to be classified into the
same cluster. Examples of such families include mir169 1 and
mir169 2 of plant miRNAs.

Fig. 1 shows the average voted accuracies of our approach
using Manhattan distance and cosine similarity respectively,
the basic K-means method, and the average-link approach
with MSA score as similarity measure between sequences.
It can be seen from Fig. 1 that our approach using Man-
hattan distance has the best performance. When K=706,
the average accuracy is approximately 92.5%, which means
that on average about 8,533 out of the 9,225 miRNAs in
this dataset are considered to be correctly clustered. By
contrast, the maximum average accuracies of our approach
with cosine similarity, K-means using Manhattan distance
and Euclidean distance, average-link with MSA similarity are
about 91.1% (706 clusters), 88.6% (628 clusters), 90.1% (628
clusters) and 92.2% (628 clusters), respectively. Fig. 1 also
suggests that it is not the case that the more clusters the better
clustering performance. The results of these methods tend to
be stable when the cluster number is larger than 600.

The Davies-Bouldin index (DBI) [12] is an internal eval-
uation metric involving quantities of the dataset itself. It
measures the inherent quality of partitions of a clustering
algorithm without any apriori knowledge about the structure
of the dataset. It is based on the intra-cluster similarity and the
inter-cluster dissimilarity. The detail about this measurement
is described in Section Materials and Methods. Fig. 2 shows
the DBI values on dataset R1. Since DBI measures the
structure quality of clustering based on distance metric, we
compare only our approach with Manhattan distance and the
basic K-means algorithm with Manhattan distance. Again, our
approach outperforms the basic K-means clustering method.
This means that the structure of clustering result of our
approach is better than that of the simple K-means algorithm,
which confirms the effectiveness of our approach.

Table II and Table III present some details of a clustering
result. Here, the cluster number is set to 628, the voted accu-
racy and the Davies-Bouldin index are about 92.8% and 1.03,
respectively. Table II is miRNA distribution over different
clusters. We consider only miRNA families whose sizes are

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

204 Xi’an, China, August 18–20, 2012



TABLE I
THE DATASETS USED IN THIS STUDY

Dataset Size Source Family Description
R1 9,225(0) mirBase16 394 From animal and plant families that contain no less than 5 members.
R2 17,205(5,777) mirBase18 451+unclassified From animal and plant families that contain no less than 5 members,

plus unclassified sequences

The “Size” column indicates the number of miRNAs in each dataset, with the number of unclassified miRNAs enclosed in the
parentheses.
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Fig. 1. The average voted accuracy results on dataset R1. There are two
versions of our approach (with Manhattan distance and cosine similarity), the
basic K-means approach (with Manhattan distance and Euclidean idstance),
and the average-link clustering method with MSA similarity. It can be seen
that our approach with Manhattan distance outperforms the other methods
with regard to all selected numbers of clusters.
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Fig. 2. The average DBI values on dataset R1. The lower the DBI value is,
the better the performance is. The results show that the structure of clustering
result of our approach is better than that of the basic K-means method. Since
DBI measures the structure quality of clustering based on distance metric, we
compare only our approach with the basic K-means algorithm, which all use
the Manhattan distance.

more than 100, and the top 3 largest clusters. Note that the
cluster number is set to 628, which is larger than the number
of families, it is inevitable that miRNAs from one family may
distribute across several different clusters. This does not matter
because if most miRNAs of a family distribute among several
much pure clusters, these clusters can be taken as all belonging

to that family and postprocessing such as multiple sequence
alignment (MSA) could be done to merge these clusters. Take
the largest family let-7 for example. We use Clustal [13] to
analyze clusters 161, 512, 273 and find out that these clusters
are all pure enough to indicate their own families. And then,
we randomly choose several representative sequences from
each cluster and align them together. From the result of MSA,
we can merge these clusters to represent the family let-7. This
procedure can be performed for every cluster to do possible
merging. In Table II, most families have more than half of their
miRNAs distributing among the top 3 largest clusters, except
for mir-154. Even if we consider only the largest cluster for
each family, there are nearly half of these families that have
more than 50% of their miRNAs are assigned to one cluster.
For example, the family MIR166, which has 141 miRNAs in
total, 134 of them are in cluster #606, which accounts for more
than 95% of that family. Table III is miRNAs distribution
of families that have only 5 members, the minimum size
of families in this experiment. There are totally 34 families
that have only 5 members, Table III shows only 16 of them.
Therein, 8 out of 16 families have all their members clustered
into one cluster. In all 34 families of size 5, 20 of them (59%)
have their members clustered into one cluster.

Fig. 3 shows the family size distribution of dataset R1 and
cluster size distribution of the clustering result when R1 is
grouped into 628 clusters. Table IV presents the family con-
stituent of the largest 20 clusters. For example, the members of
the biggest cluster, i.e. cluster #606, belong to only one family,
MIR166. Obviously, this cluster is considered to be the cluster
of this family. There are also 7 other pure clusters like this one.
Although other clusters are not so pure, they contain members
of at most 3 families and there is a dominant family in each
cluster. For example, the second largest cluster #594 has 118
members, 117 of which belong to the family MIR395 and only
1 of which belongs to the family mir-30. Of course, cluster
#594 is also considered as the cluster of family MIR395. Note
that it can also be seen from Table II that this cluster is the
largest one for family MIR395, the rest member of this cluster,
which belongs to mir-30, is obscured by the dominant family.

B. Clustering Results on Dataset R2 with Unclassified miR-
NAs

We also apply our approach to cluster those miRNAs
whose family labels are not known in miRBase18. There
are 21,643 mature miRNA sequences in miRBase18. The
dataset R2 contains 17,205 sequences, where 11,428 sequences
explicitly belong to 451 families and 5,777 sequences are not
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TABLE II
THE MIRNA DISTRIBUTION OVER CLUSTERS FOR MIRNA FAMILIES IN R1 THAT

HAVE MORE THAN 100 MEMBERS

Family Size 1st cluster 2nd cluster 3rd cluster Ratio1 Ratio2
let-7 195 77(161) 19(512) 18(273) 39.5% 58.5%
mir-17 175 44(255) 38(311) 27(517) 25.1% 62.3%
mir-154 169 16(289) 14(404) 14(534) 9.5% 26.0%
mir-515 146 34(9) 32(111) 24(298) 23.3% 61.6%
MIR166 141 134(606) 7(169) - 95.0% 100%
MIR156 140 79(344) 42(388) 13(564) 56.4% 95.7%
mir-9 120 57(460) 14(50) 14(553) 47.5% 70.8%
MIR395 119 117(594) 1(222) 1(521) 98.3% 100%
mir-25 115 63(159) 18(36) 16(392) 54.5% 84.3%
mir-2 110 49(549) 37(532) 12(571) 44.5% 89.1%
MIR171 1 109 70(618) 35(416) 2(358) 64.2% 98.2%
mir-30 109 27(200) 21(361) 16(422) 24.8% 58.7%
mir-8 109 29(54) 19(207) 17(464) 26.6% 59.6%
MIR159 107 56(338) 48(368) 1(138) 52.3% 98.1%
MIR399 107 55(434) 37(261) 9(199) 51.4% 94.4%
mir-15 102 31(485) 28(397) 24(529) 30.4% 81.4%

Only the largest 3 clusters are shown. The number in parentheses is the cluster
tag. For each family, “1st cluster”, “2nd cluster” and “3rd cluster” mean the largest
3 clusters. “Ratio1” is the ratio of the largest cluster size over the family size,
“Ratio2” is the ratio of the overall size of the largest 3 clusters over the family
size.

TABLE III
THE MIRNA DISTRIBUTION OVER CLUSTERS FOR MIRNA FAMILIES IN R1 THAT HAVE ONLY 5

MEMBERS

Family 1st cluster Family 1st cluster Family 1st cluster Family 1st cluster
mir-2808 2(286) mir-584 5(220) mir-762 4(181) mir-92 3(159)
mir-3065 3(22) mir-589 5(41) mir-84 2(155) mir-935 5(578)
mir-492 5(97) mir-676 3(299) mir-883 3(431) mir-980 5(537)
mir-562 4(50) mir-74 5(250) mir-889 5(144) mir-996 5(337)

Only the largest clusters are shown. The number in parentheses is the cluster tag.
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Fig. 3. The family size distribution of dataset R1 and the cluster size
distribution of the clustering result when grouping dataset R1 into 628 clusters.

assigned. Note that more than one third of these miRNAs are
unclassified, which is a larger portion compared to that of the
early versions of miRBase. The cluster number is set to 800
and 1,200.

Table V shows the clustering result on R2. According to
the result, clusters containing unclassified miRNAs fall into
3 categories. The first category correspond to new families,
where most miRNAs are unclassified. Here, if the number of
unclassified miRNAs in a cluster is more than 3 times of that

TABLE IV
THE FAMILY CONSTITUENT OF THE LARGEST 20 CLUSTERS

Cluster Size 1st family 2nd family 3rd family
cluster #606 134 MIR166(134) - -
cluster #594 118 MIR395(117) mir-30(1) -
cluster #344 81 MIR156(79) mir-63(1) mir-2808(1)
cluster #259 79 MIR169 2(75) MIR169 1(4) -
cluster #161 77 let-7(77) - -
cluster #325 71 MIR160(69) mir-675(2) -
cluster #209 70 MIR169 1(67) mir-344(2) mir-1420(1)
cluster #618 70 MIR171 1(70) - -
cluster #159 66 mir-25(63) mir-92(3) -
cluster #460 60 mir-9(57) MIR394(2) mir-208(1)
cluster #622 60 mir-7(59) mir-1422(1) -
cluster #221 56 mir-1(55) MIR2629(1) -
cluster #338 56 MIR159(56) - -
cluster #434 55 MIR399(55) - -
cluster #60 53 mir-34(51) mir-449(2) -
cluster #48 52 mir-29(52) - -
cluster #383 52 MIR164(47) mir-515(4) MIR160(1)
cluster #40 50 mir-10(50) - -
cluster #549 50 mir-2(49) mir-1419(1) -
cluster #374 49 mir-125(49) - -

The number in parentheses is the number of miRNAs that belong to the
family. Note that for the top 20 clusters, at most 3 families are covered.

of classified miRNAs, these unclassified miRNAs in such a
cluster will possibly form one or several new families (de-
pending a more detailed analysis). The second category covers
the mixed clusters where the unclassified miRNAs make up of
the first or second largest part and the ratio of the numbers of
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TABLE V
CLUSTERING RESULTS ON DATASET R2 WITH UNCLASSIFIED MIRNAS

Cluster number New clusters Mixed clusters Others
800 199(1831+256) 378(2837+4459) 175(1109+6684)
1200 361(2276+199) 513(2547+4123) 235(954+6952)

The resulting clusters are subsumed to three categories: new families, mixed
clusters and the others. The first numbers in the three (2nd ∼ 4th) columns
are the number of clusters, and the numbers in the parentheses are the
number of unclassified miRNAs and the number of classified miRNAs in
the corresponding clusters.

miRNAs between the first largest part and the second largest
part is no more than 3 times. In this case, we assign these
unclassified miRNAs to the largest family in the cluster. The
other clusters that contain unclassified miRNAs consist of the
third category. The remaining clusters are dealt with as in
the previous experiment, where all members belong to some
known families. Table V shows the clustering results when the
number of clusters is set to 800 and 1,200. When the dataset
is clustered into 800 groups, we obtain 199 new clusters that
contain in total 1,831 unclassified miRNAs, 378 mixed clusters
that cover in total 2,837 unclassified and 4,459 classified
miRNAs. In addition, 175 clusters contain relatively fewer
unclassified miRNAs. When the dataset is clustered into 1,200
clusters, the numbers of all three categories of clusters increase
up to 361, 513 and 235, respectively. More new families
generated indicates that more unclassified miRNAs previously
assigned to existing families are now distinguishable.

To further illustrate the clustering result, we also use mul-
tiple sequence alignment (MSA) to align sequences of two
clusters. Fig. 4 is the alignment of unclassified sequences of
a new cluster while the cluster number is 800. Though this
is not an ideal cluster, some sequences likely belong to a
new family. Fig. 5 is the alignment of a mixed cluster while
the cluster number is 1200. The first 17 sequences belong
to the family mir-278 and the last 10 sequences (shaded)
are unclassified in miRBase18. We can see that there are 5
unclassified sequences in this cluster that very likely belong
to the dominant family. The other 5 unclassified sequences
are different from the dominant family, which may belong to
an unknown tiny family that has less than 5 members. This
may be an indication of drawback of using short N-gram,
since it considers only adjacent N locations. Nevertheless, if
the sequences are similar enough, it is very likely for them
to be clustered into the same cluster, just as shown in the
experiment on miRBase16, and a few outliers can be detected
by postprocessing such as manually inspection or MSA.

III. DISCUSSION

With the increase of un-annotated miRNAs in miRBase,
traditional semi-automated annotation methods will not be suf-
ficient. And if there are new unknown families hidden in these
un-annotated miRNAs, then even supervised classification
methods will not work. In such cases, the clustering methods,
which can automatically find out cluster structures in miRNA
datasets without any prior knowledge about the families, can
be a useful tool to identify new families and classify miRNAs
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-A A U C G U C G -U U C G - - -G G A U C - -C G C - - - - - -

Consensus

-A A U C U U C G -U U C G G U G G G A C U U U C G U C C G U U U

Fig. 5. The MSA result of a mixed cluster. The first 17 sequences belong
to the family mir-278 and the last 10 sequences (shaded) are unclassified in
miRBase18. The cluster number is 1200.

into the existing or the newfound families. The approach
proposed in this study using N-gram representation and the
SKWIC clustering algorithm to classify miRNA sequences is
shown an effective and efficient method.

To use this approach to unsupervisedly classify miRNAs,
there are two important parameters to specify, i.e., the number
of features and the number of clusters. The number of features
is determined by the number of N-grams used. In this study,
we adopt up to 4-grams to represent miRNA sequences, and
the number of features is 340. If longer N-grams are used, the
number of features will increase exponentially. For instance,
when 5-grams are used, the number of features will rise to
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1,364, and then 5,460 for 6-grams, and so forth. The computa-
tional cost on vector operation will also increase exponentially.
Hence, there is no much room for tuning this parameter.
Another parameter, the cluster number, can be changed more
freely, which depends on the number of existing families. It
can be seen from our first experiment with miRBase16, where
the families of all miRNAs are known, that a slightly larger
number of clusters would result in a better accuracy. In our
test of unclassified data in miRBase18, the cluster number is
set to 800 and 1,200.

Despite the intrinsic randomness of the K-means based
method, the experiment on classified miRNAs in miRBase16
shows that our method is quite stable, that is, no matter
what cluster number is set with a reasonable range, the worst
resulting voted accuracy is still always more than the average
voted accuracy minus less than 1%. So, even if we run this
method only one time, the clustering result will also be good
enough. Furthermore, the efficiency of our approach is another
advantage. With appropriate parameter setting, our approach
using the Manhattan distance could almost always generate
reasonable clusters in a few minutes.

Of course, short N-grams are less expressive than some
other sophisticated presentation schemes, because it considers
only N adjacent positions in a sequence. However, one of
the biggest strength of our approach is its efficiency. Only
several minutes are needed to do the clustering on a PC. The
effectiveness can also be seen in the experiments. For the
future work, other features such as the secondary structure
units can be considered to increase the power of miRNA
sequence presentation and hence to enhance the performance
of clustering.

Another concern about the N-gram representation of miR-
NAs is the sparseness of the vectors. Since miRNAs are short,
most of the features in a vector are 0. Actually, the weighting
scheme in our approach can effectively and adaptively deal
with data sparseness.

IV. MATERIALS AND METHODS

A. Datasets

We use miRBase [5], [6], [7], [8] to test our approach. This
is a searchable online repository for all miRNA sequences
and annotations [5]. In its latest version of release 18, there
are 18,226 hairpin precursors, expressing 21,643 maturities
in 168 species. In this study, we choose the release 16 and
18 as our test datasets. The release 16 contains over 15,000
MIR gene loci in over 140 species, and 17,341 mature miRNA
sequences [5]. Two datasets, R1 and R2, are constructed for
experiments from miRBase 16 and 18, respectively. Dataset
R1 is based on miRBase 16 by choosing miRNAs in families
that belong to plants and animals, and contain no less than
5 members. Dataset R2 is constructed from miRBase 18, it
includes all miRNAs in plant and animal families with no less
than 5 members, along with the unclassified sequences. The
details are summarized in Table I.

B. Feature extraction

We represent each miRNA sequence as a vector of N-
grams [10]. An N-gram is a subsequence consisting of N
spatially consecutive items extracted from a given sequence.
In the context of miRNAs, items include A, G, C and U,
which are the four base nucleotides constituting RNAs. For
instance, given an miRNA sequence UCCAG, there are 1-
grams A, G, C, U, 2-grams UC, CC, CA, AG, 3-grams UCC,
CCA, CAG, and so forth. Here, we consider only up to 4-
grams. In an miRNA vector, the first 4 dimensions are features
representing 4 unigrams A, G, Cand U, followed by 16 bigrams
AA, AG, AC, AU, GA, GG, GC, GU etc., and then 64 trigrams
AAA, AAG, AAC, AAU etc., and finally 256 tetragrams AAAA,
AAAG, AAAC, AAAU etc. After the collection of miRNA
vectors is obtained, each dimension is further weighted by the
concentration factor [9]. The concentration factor is devised to
reflect the importance of different types of N-grams. Longer
grams are considered more important than shorter ones.

C. Clustering method

Clustering is the process of automatically grouping a set of
data objects into different groups (i.e. clusters), without any
prior knowledge of which group a data object belongs to. The
target is to make sure that data objects in the same cluster
are more similar with each other than with those in different
clusters, according to some specified measurement. Here, the
data objects refer to miRNAs and the task is to assign them
into different clusters without knowing the true family of each
of them.

There are a wide variety of clustering methods proposed to
solve different kinds of problems. Typically, clustering meth-
ods can be divided into the following categories: partitioning-
based methods, hierarchical methods, density-based methods
and spectral clustering etc. In this study, we use the SKWIC
clustering method [11] to perform the unsupervised classifica-
tion of miRNA sequences. The SKWIC algorithm, or Simul-
taneous KeyWord Identification and Clustering, was originally
proposed for clustering text documents, and is a variant of the
Simultaneous Clustering and Attribute Discrimination (SCAD)
method [14], both of which are based on the K-means method.
The K-means method is a classic partitioning-based clustering
method. The basic algorithm of K-means is as follows: first,
specify the number k of clusters to be obtained and select k
initial centroids (the centers of clusters); After that, iteratively
distribute data objects to clusters and update the centroids
according to data assignments until the centroids do not change
or the amount of changes is under a specified threshold. This
is an efficient and effective method to automatically group a
set of data objects into clusters. It has the advantage of fast
convergence to a local optimum.

The basic K-means algorithm treats each dimension or
feature as equally relevant to every cluster. However, it is
obvious that in many circumstances, different clusters differ
largely in their best feature sets, and the relationships between
clusters and their respective feature sets need to be discovered
simultaneously [11]. The advantage of the SKWIC algorithm
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over the basic K-means algorithm described above is that the
former considers the weight of each feature in clusters simul-
taneously when clustering, and it uses the cosine similarity to
measure the proximity of data objects in a high dimensional
vector space, in which the Euclidean distance measurement is
not applicable.

Like the K-means algorithm, the mathematical background
behind the SKWIC algorithm [11] is to minimize an objective
function as follows:

J(C,V; χ) =
C∑

i=1

∑

xj∈χi

n∑

k=1

vikD
k
wcij +

C∑

i=1

δi

n∑

k=1

v2
ik, (1)

subject to

vik ∈ [0, 1] ∀i, k; and
n∑

k=1

vik = 1, ∀i (2)

where C is the number of clusters, n the number of di-
mensions, χi the cluster i, vik the weight of cluster i in
dimension k, Dk

wcij
the distance along individual dimension k

which will be discussed later. This objective function has some
differences from that of classic K-means. More precisely, the
first component is very much like the objective function of
classic K-means except that its distances along individual
dimensions are weighted with a positive value. Dimensions
with high weights are more relevant to that cluster than those
with low weights. And there is another component in the
objective function to control the weights, that is, a weighted
sum of squares of weights.

The first component in (1), that is, the sum of weighted dis-
tances between data points and their corresponding cluster cen-
troids, is intended to obtain compact clusters. It is minimized
when only one dimension in a cluster is totally relevant and all
the other dimensions are irrelevant. The second component in
(1), which is the weighted sum of squares of weights, is used to
control the weights vik. It is minimized when all dimensions
are equally weighted. By combining these two components,
with appropriate parameter δi, the resulting clusters will have
their within-cluster weighted distances minimized, while the
feature weights for each cluster are optimized.

Given a set of centroids and a partition, we can adopt the
Lagrange multiplier method to solve the constrained optimiza-
tion problem about J with respect to dimension weight vik.
We turn the objective function (1) and the constraint (2) into
the following form, which is called the Lagrange function:

J(Λ,V) =
C∑

i=1

∑

xj∈χi

n∑

k=1

vikD
k
wcij +

C∑

i=1

δi

n∑

k=1

v2
ik

−
C∑

i=1

λi(

n∑

k=1

vik − 1),

(3)

where Λ = [λ1, λ2, ..., λC ] is the Lagrange multipliers. To find
out the stationary point of equation (3), the gradient of J is

set to zero and obtain



∂J(Λ,V)
∂vik

=
∑

xj∈χi
Dk

wcij
+ 2δivik − λi = 0

∂J(Λ,V)
∂λi

= (
∑n

k=1 vik − 1) = 0.

(4)

Solving the above simultaneous system of equations for vik,
we obtain

vik =
1

n
+

1

2δi

∑

xj∈χi

[

∑n
l=1 Dl

wcij

n
−Dk

wcij
]. (5)

Through this equation, the dimension weights of clusters can
be updated, given a set of centroids and a partition according
to that centroids and weights, to reflect the current dimension
relevance of clusters. The first part of equation (5) is 1/n,
which is the default weight if all dimensions are treated equally
in a cluster. The second part, which is the sum of differences
between the average of individual dimension distances and
the individual distances of dimension k, is the bias that takes
into account the differences between dimensions. This part can
either be positive or negative. A positive value will increase
that weight, which means that the corresponding dimension
is associated with the cluster more closely, for the sum of
individual distances of dimension k is less than the sum of the
average of all individual distances. Similarly, a negative value
of that part means less relevant to the cluster for a dimension.

The parameters δi in the above equations are important
because it is used to weight the relative importance of the
second component in equation(1). If δi is too small, then the
contribution of the second part in (1) will be negligible, and
one dimension in cluster χi will have relative high weight
respect to other dimensions, which would have quite small
weight or even zero weight. On the other hand, if δi is
chosen too large, then almost all dimensions in cluster χi

will be equally weighted with values 1/n approximately [11].
Consequently, δi will be updated iteratively as follows:

δ
(t)
i = Kδ

∑
xj∈χ

(t−1)
i

∑n
k=1 v

(t−1)
ik Dk(t−1)

wcij

∑n
k=1(v

(t−1)
ik )2

, (6)

where the superscripts (t) and (t− 1) mean that their values
are in the current iteration t and in the previous iteration t−1,
respectively, and Kδ is a constant. Due to δi, the weights vik

are often out of the range [0, 1]. If this occurs frequently, then
the constant Kδ should be increased. If it occurs occasionally,
then we could re-tune the weights of the corresponding cluster
as follows:

vik ← vik + |minn
k=1{vik}| if vik < 0. (7)

In the original SKWIC algorithm [11], the distance mea-
surement of data points is based on the cosine similarity.
However, in this study, the experiment results show that, when
the distance is measured by the Manhattan distance (a.k.a. city-
block distance), more miRNAs are correctly clustered. Hence,
the distance along individual dimension Dk

wcij
is defined as

follows:
Dk

wcij
= |xjk − cik| (8)
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.
When partitioning, each data point is assigned to the nearest

cluster centroid, measured by the distance defined as above in
(8). Except for that the distance measurement is weighted,
there is nothing particular here.

After each step of partitioning, a centroid updating step is
carried out, as in the classic K-means. In SKWIC, this is done
through the following equation:

cik =





0 if vik = 0,

∑
xj∈χi

xjk

|χi| if vik > 0.

(9)

The whole clustering process of SKWIC is executed as
follows: first, specify the number k of clusters to be obtained,
select k initial centroids randomly, and initialize the partition
with equal dimension weights 1/n; after that, iteratively up-
date dimension weights vik using (5), assign data objects to
clusters, update centroids according to that assignment and
update δi by (6), until the centroids do not change or the
amount of changes is under a specified threshold.

In addition to the implementation of SKWIC algorithm,
we also use other clustering methods, including simple K-
means algorithm, EM algorithm, DBSCAN algorithm etc.
Source codes of all these methods are from Weka 3 [15],
an open source data mining software repository (available at:
http://www.cs.waikato.ac.nz/ml/weka/) written in Java.

D. Evaluation methods

To evaluate the quality of the clustering result, here we
adopt an accuracy measurement based a vote strategy, which is
based on the confusion matrix constructed from the clustering
result and reflects the family/cluster relationship implied in
the clustering result. While evaluating the voted accuracy,
miRNAs of the largest family in a cluster, together with those
in the second largest family which has no less than 1/3
miRNAs of the largest family, are considered as correctly
clustered. However, if the total number of miRNAs in a
cluster is less than 5, then this cluster is thought to be invalid
cluster and is ignored. The final value of the voted accuracy
is obtained by dividing the number of correctly clustered
miRNAs by the total number of miRNAs in the data set, and
hence its range is [0, 1]. When all miRNAs in the families
are correctly clustered into their corresponding clusters, the
accuracy is 1.

We also use another measurement called Davies-Bouldin
index (DBI) [16], which is an internal evaluation metric, to
validate the clustering result. An internal evaluation metric
uses only information of the tested dataset. The DBI measures
both the intra-cluster similarity and the inter-cluster dissimi-
larity. Let si be the intra-cluster dissimilarity of cluster i, and
dij be the inter-cluster dissimilarity between the centroids of
cluster i and j. The dissimilarity Rij between a pair of clusters
i and j is defined as follows:

Rij =
si + sj

dij
. (10)

Then, the DBI is defined as

DB =
1

C

C∑

i=1

max
j=1,...,C;i ̸=j

Rij , (11)

where C is the number of clusters.
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