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Abstract—The study of the global stability is essential for designing 

and controlling genetic regulatory networks. Most existing results 

on this issue are based on linear matrix inequality (LMI) approach, 

which results in checking the existence of feasible solutions to high 

dimensional LMIs. In our previous study, we present several 

stability conditions for genetic regulatory networks with 

time-varying delays, based on M-matrix theory and the non-smooth 

Lyapunov function.  In this paper, we design a smooth Lyapunov 

function and employ M-matrix theory to derive new stability 

conditions for genetic regulatory networks with time-varying delays. 

Theoretically, these conditions are less conservative than existing 

ones in some cases. For genetic regulatory networks with n genes 

and n proteins, these conditions become to check if an n×n matrix is 

an M-matrix, which is much easier than existing results. To 

illustrate the effectiveness of our theoretical results, two genetic 

regulatory networks are analyzed. 
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time-varying delay, M-matrix 

 

I. INTRODUCTION 

A genetic regulatory network is a dynamic system to describe 

interactions among products of genes: mRNAs and proteins. It 

has been proved that many diseases (such as cancer, diabetes, and 

AIDS) stem from the malfunctions of genetic regulatory networks 

of the corresponding cell lines. Therefore, it is indispensible in 

understanding the properties and functions of various genetic 

regulatory networks. However, since it is difficult (if not 

impossible) to fully understand genetic regulatory networks only 

through biological experiments, it is necessary to address this 

issue through modeling and analysis methods from the viewpoint 

of systems theory. Based on the statistic thermodynamics and  
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biochemical reaction principles [1, 2], a genetic regulatory 

network can be model by a group of nonlinear differential  

 

equations [3, 4]. In genetic regulatory networks, mRNAs and 

proteins may be synthesized at different locations (i.e. nucleus  

and cytoplasm, respectively), thus transportation or diffusion of 

mRNAs and proteins between these two locations results in  

sizeable delays [5-8]. This study is focusing on the global 

stability of genetic regulatory networks with time-varying delays.  

In [5, 6], based on linear matrix inequality (LMI), some 

sufficient conditions of the global stability are derived for genetic 

regulatory networks with time-varying delays. To apply these 

conditions to a genetic regulatory network with n genes and n 

proteins, typically a couple of several 5n×5n to 7n×7n 

-dimensional LMIs must be solved. Although LMI can be solved 

by MatLab, the construction of large size LMIs is very annoying. 

In [7, 8], we study global stability of genetic regulatory networks 

with delays, based on M-matrix theory [9, 10]. In [7] we also 

consider the robust stability to parameter uncertainties. The 

derived conditions are to check if a 2n×2n matrix is an M-matrix. 

In [8], we reduce the stability conditions to check if an n×n matrix 

is an M-matrix 

 In [7, 8], the Lyapunov functions are non-smooth for deriving 

the stability conditions. In this study, we will design a smooth 

Lyapunov function and derive some new stability conditions for 

genetic regulatory networks with time-varying delays, based on 

M-matrix theory. Section II describes genetic regulatory 

networks with time-varying delays. Some properties of such 

systems are discussed too. In Section III, we derive sufficient 

conditions for the global stability of genetic regulatory networks 

with time-varying delays. We theoretically prove that the newly 

derived conditions are less conservative and simpler than those in 

[7]. To illustrate the effectiveness, two genetic regulatory 

networks are analyzed in Section IV. Section V gives our 

conclusion of this study. 

II. GENETIC REGULATORY NETWORKS WITH TIME-VARYING 

DELAYS 

Genetic regulatory networks with time-varying delays consisting 

of n  mRNAs and n  proteins can be described by the following 

equations: 
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            for i=1,2,…,n. 
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  represent the concentrations of mRNA i 

and protein i, respectively. 
mi

k  and 
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k are positive real numbers 

that represent the degradation rates of mRNA i and protein i, 

respectively. 
i

r  is a positive constant representing the rate of 

translating mRNA i to protein i. )))((( ttpc
pi

  is a nonlinear 

function of ,)),(( 11 ttp p  ))(( ttp pnn  representing the 

regulation function of gene i. Both )(tmi  and )(tpi  are positive 

and piecewise differentiable functions indicating time-varying 

delays for mRNA i and protein i, respectively.  

     The bottom equation in model (1) describes the translational 

process. The term )(tmr
ii

 reflects the fact that one kind of protein 

is translated only from one kind of mRNA molecule. The top 

equation in model (1) describes the transcriptional process. 

))(( tpc
i

 represents the relative promoter or repressor activity of 

all possible proteins to gene i  as a function of the concentrations 

)(tp of all possible proteins. One gene or mRNA is generally 

activated or repressed by multiple proteins.  In this paper, we take 
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 , which called the “SUM” logic [5,11]. 

That is, each transcription factor acts additively to regulate gene i.  

The SUM logic is applicable if one gene can be regulated by 

several proteins independently by binding with different 

promoters or by a family of similar proteins independently 

binding to one promoter. In many natural gene networks, this 

SUM logic does exist [11]. For example, in apoptosis [12] 

antiapoptotic proteins Bcl-2 and Bcl-xL identically and 

independently repress the activation of procaspace-9 while 

proapoptotic proteins Bax, Bad and Bik identically and 

independently repress the activation of Bcl-2 and Bcl-xL. The 

regulation function ))(( tpc
jij

 is a function of the Hill form [1, 11] 

as follows: 
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if transcription factor j is an activator of gene i,  where 
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a  and 

j
b  are nonnegative constants, 

j
h  is the Hill coefficient 

representing the degree of cooperativity. In this study, assume 

that 1
j
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Then system (1) can be rewritten as follows 
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            for i=1,2,…,n. 

where F = (fij) is an n×n matrix representing regulatory 

relationships of the network, which is defined as: fij = 0 if 

transcription factor j does not regulate gene i; fij = aij if 

transcription factor j activates gene i; and fij = -aij if transcription 

factor j represses gene i. li is a constant and is defined as 





Rj

iji
al , where R is the set of repressors of gene i.  

Furthermore, in system (2)  function 
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is a monotonically increasing function in variable u. Obviously 

these functions with 1
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h  have the continuous derivatives for 

0u . From calculus, we have 
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 Assume that ),( pm  is an equilibrium state of genetic 

regulatory network (2). That is, they are satisfied the following 

equations: 
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  for i=1,2,…,n. 

To shift equilibrium ),( pm  to the origin, let mtmtx  )()(  

and ptpty  )()( , then we have the following equations: 
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From (3), we have  
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represents any kind of well-defined (e.g., right, left or ordinary) 

derivatives. In this paper assume that 1
pj

  and 1
mj

  for j=1, 

2, …, n. In addition, inequalities 
pj

0  and 
mj

0  are true.  

Actually, if 
pj

 (or
mj

 ) is strictly less than 0, )(t
pj

  (or )(t
mj

 ) 

will be a negative after some time point t ≥ 0, which contradicts 

with the meaning of time delay. Therefore in this paper we 

consider that 1,0 
mjpj

  for j=1, 2, …, n. 

III. GLOBAL STABILITY OF GENETIC REGULATORY NETWORKS 

WITH TIME-VARYING DELAYS 

In this section we will derive some novel sufficient conditions for 

the global stability of genetic regulatory network (2) or (4) based 

on M-matrix theory. To this end, define a 2n × 2n matrix 

associated with genetic regulatory network (4)  
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and ni is the number of non-zero elements in row i of matrix F.  

   To derive our main results, we need some results about 

M-matrices. Let Fn denote the set of all n × n real-valued matrices 

whose off-diagonal entries are non-positive. There are more than 

50 equivalent statements for nonsingular M-matrices [9]. In this 

study, we adopt the following definition. 

    Definition 3.1 [9]: A matrix A in Fn is a nonsingular M-matrix 

if there exists a non-negative matrix B with the maximal 

eigenvalue r and a positive number c > r such that  A= cI – B 

 Lemma 3.2 [9, 10]: The following five statements are 

equivalent 

 a) a matrix A in Fn is a nonsingular M-matrix;  

 b) A
T
  is in Fn  and is a nonsingular M-matrix ; 

 c) there exists an n-dimensional vector γ >0 such that 

                            Aγ>0 

where γ >0  means  that all components of γ  are positive.   

     d) all real eigenvalues of A in Fn are positive.  

     e) the real part of all eigenvalues of A in Fn are positive.  

     In Lemma 3.2, the first three statements are used to derive 

theorems while the last two statements are used to check if a 

matrix is an M-matrix. 

    Theorem 3.3: If the matrix L defined in (6) associated with 

network (4) is a nonsingular M-matrix, the equilibrium state of 

genetic regulatory network (2) is unique and is globally 

asymptotically stable. 

     Proof: From Lemma 3.2, L
T
 is a nonsingular M-matrix if L is a 

nonsingular M-matrix, and there exists a 2n-dimensional vector 

γ>0 such that L
T
γ >0, that is 
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From Equation (7), we have δ > 0. In [7,8], the Lyapunove 

functions adopted contains the absolute functions of x(t) and y(t) 

and thus are not smooth. Differently from [7, 8], in this study we 

consider the following smooth Lyapunov function: 
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Calculating derivative of V(x(t), y(t)) defined in Equation (8) 
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Therefore, from Lyapunov stability theory [13, 14], genetic 

regulatory network (2) is globally asymptotically stable. To prove 

the uniqueness of the equilibrium state of genetic regulatory 

network, we will use proof-by-contradiction technique. Note that 

matrix L associated with genetic regulatory network (2) is 

independent of the equilibrium state. Therefore, if genetic 

regulatory network (2) has another equilibrium state, it is also 

globally asymptotically stable, which is not possible. 

      Combining Theorem 3.3 above and Lemma 4 in [8], we have 

the following main result of this study  

     Theorem 3.4: If the n×n matrix  

                         
2222 EDKKLn

pm
   

is a nonsingular M-matrix, the equilibrium state of genetic 

regulatory network (2) is unique and is globally asymptotically 

stable.  

       In [7], we have derived the following global stability 

condition for system (2). 

      

 

 

     Theorem 3.5 [7]: If the following matrix L   
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is a nonsingular M-matrix, the equilibrium state of genetic 

regulatory network (2) is unique and is globally asymptotically 

stable. Where   
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     Combining Theorem 3.5 and Lemma 4 in [8], we have  

     Theorem 3.6: If the n×n matrix EDKKnL
pm
  is a 

nonsingular M-matrix, the equilibrium state of genetic regulatory 

network (2) is unique and is globally asymptotically stable.  

      Note that matrix L  in (9) is an M-matrix iff there exists a 

2n-dimensional vector μ>0 such that the following two 

inequalities is true. 
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From the above, if 1)1( 
ipj

n ,  μ
2
 is one of the vectors that 

satisfy (7). Therefore we obtain 

     Corollary 3.7: If 
ipj

n/11 , the stability conditions in 

Theorems 3.3 and 3.4 are less conservative than that in Theorems 

3.5 or 3.6. 

       For genetic regulatory networks with ring structure [15], we 

have ni=1 and thus 
ipj

n/11 =0 is trivial. Therefore, from 

Corollary 3.7, the stability conditions in Theorems 3.3 and 3.4 are 

always less conservative than those in [7] for genetic regulatory 

networks with ring structure.   

IV.  ILLUSTRATIVE EXAMPLES 

To illustrate the effectiveness of the presented theoretical 

results in previous sections, the globally delay-independent 

stability of two genetic regulatory networks is analyzed in this 

section. Comparisons with some existing results [6, 7] are made 

too. 
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Example 1: We first consider gene toggle switch network 

shown in Figure 1. In this network, two genes are repressed by 

each other and activated by their own proteins. Gene toggle 

switch network has been studied theoretically and experimentally 

at mRNA level without consideration of self-activation and 

time-invariant delays [4, 7, 16]. 

 

 

Figure 1. Structure of gene toggle switch network (→: activation, 

─┤: repression) 

 

This study considers gene toggle switch network with 

time-varying delays as follows: 
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where delays τmj(t) =[sin(t)+1]/2 and τpj(t) =[cos(t)+1]/2 for j=1, 2. 

Comparing to network (2), for this system we have h1=1 and b1=1; 

h2=2, 16/33
2
b , and 
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From Theorems 3.5 and 3.6, we can figure out  
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and has the eigenvalues: -1.4 and 3.0, which indicates that nL  is 

not an M-matrix [9,10]. Therefore, Theorem 3.6 and thus 

theorems in [7] is invalid for this example. 

On the other hand, from Theorems 3.3 and 3.4, we can figure 

out  

                    













28.812.5

72.088.3
Ln   

and has the eigenvalues: 3.16 and 9.0, which indicates that Ln  is 

an M-matrix [9,10]. Therefore, according to Theorems 3.4, gene 

toggle network (11) is globally stable. The trajectory of mRNA 

and protein concentrations in system (11) is plotted in Figure 4 

which indicates that this system is indeed globally stable.   
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Figure 2. Trajectories of mRNA and protein concentrations of system (11) in 

Example 1  
 

From this example, we can conclude that our newly derived 

sufficient condition in Theorems 3.3 and 3.4 is less conservative 

than those in Theorems 3.5 and 3.6 which are from [7]. 

  
      Figure 3. Structure of gene repressilatory network  

 

Example 2: The gene repressilatory network consists of three 

genes and three proteins (lacl, tetR, cl) in a ring topology 

structure, each repressing the transcription of its downstream 

partner [3] as shown in Figure 3. This network without time 
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delays has been studied theoretically and experimentally in [3]. 

The mathematical model of this gene repressilatory network with 

time-varying delays is described by the following equations: 

     

))(()(()(

))((1
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ttdmtpctp
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ii













                   (12) 

where i= lacl, tetR, cl; j=cl, lacl, tetR; a, b, c, and d are positive 

constants.  

      In this example we consider gene repressillatory network (12) 

with the values of parameters specified as follows: h=2, a=2, 

b=2.5, c=1, and d=0.8, time delays τmj(t) =(|sin(t)|+1)/4 and τpj(t) 

=(|cos(t)|+1)/8. For system (12) with these parameter 

specifications, we have  
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        8/33
j

 , 8/1
pj

 , 4/1
mj

   for all j=1,2,3 

and thus matrix Ln associated with system (12) can be calculated 

as follows:  
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
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24.307/18

7/1824.30

07/1824.3

Ln  

Matrix Ln has three following eigenvalues: 4.5257 ± 2.2269i 

and 0.6686, and thus is a nonsingular M-matrix. From Theorem 

3.4， system (12) with this group of parameters is globally stable. 

The trajectory of protein concentrations in system (15) is plotted 

in Figure 4 which indicates that this system is indeed globally 

stable.   
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  Figure 4. Trajectories of protein concentrations of system (12) with 

parameters specified in Example 2  

 

      On the other hand, matrix nL  associated with system (12) 

can be calculated as follows:  

     

























8.107/38

7/388.10

07/388.1

nL  

Matrix nL  has three following eigenvalues: 2.7897 ± 1.7143i 

and -0.1795, and thus is not a nonsingular M-matrix. Therefore, 

Theorem 3.6 and thus theorems in [7] is invalid for this example.      

V. CONCLUSION 

In this paper, we have derived new conditions for global 

stability of genetic regulatory networks with time-varying delays. 

The sufficient conditions are developed through M-matrix theory, 

which are easy to be verified. Differently from our previous study 

[7], in this study a smooth Lyapunov function is employed, which 

is the quadratic functional in states of networks. By applying the 

results in [8], the stability condition derived in this paper is to 

check if an n×n matrix is an M-matrix, which is much easier than 

the existing results. Theoretically we have proved that the 

stability condition derived in this paper is less conservative than 

those in previous studies for some genetic regulatory networks 

with time-varying delays, especially for those with ring structure 

[15].  The theories presented in this paper are illustrated by two 

example genetic regulatory networks. The simulations have 

shown that the sufficient conditions derived in this study are 

effective.  
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