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Abstract—Bioethanol production by means of anaerobic ther-
mophilic microorganisms with pentose or hexose as the substrate
are of paramount importance in sustainable fuel innovation.
Manipulation of microorganisms and the associated experiment
conditions by means of various ad-hoc technology is obviously the
most straightforward way with the aim of maximizing bioethanol
yield. However, methodology by means of mathematical modeling
and analysis is often neglected among these routines. In this
paper, typical input-output models are applied in the metabolic
system analysis of Thermoanaerobacter sp. X514 under sole
glucose substrate, sole xylose substrate and mixed glucose and
xylose substrates conditions. Orthogonal Least Squares (OLS)
approach is used for model parameter estimation. Model selection
is proposed in order to testify the generality of the suggest-
ed model. System identification results illustrate that various
forms of Nonlinear AutoRegressive with eXogenous input models
(NARX) are applicable in delineating the system where different
substrates (glucose or xylose) are utilized during the experiments.
The proposed model structure infers that the yields of various
products in X514 are mainly driven by the history information
of the substrate consumption change. Moreover, the interaction
between the main fermentation products of X514 is indirectly
connected through the proposed models.

Index Terms—Thermoanaerobacter sp., system identification,
model estimation, bioethanol

I. INTRODUCTION

System identification and model estimation [1] have long
been viewed as common approaches in various applications,
and their effects on prediction and control of system behavior
are well recognized [2], [3], [4]. Biological systems present
complicated whereas regulated behavior thanks to specific ge-
netic codes underlying each individual identity. Understanding
biological systems by means of traditional system identifica-
tion and modeling approaches is of paramount importance in
post-genomic era.

The simple yet linear in nature model is stoichiometric
model [5], which connects metabolic reaction rates with extra-
cellular metabolites by means of stoichiometric balances. With
the basis on biochemical mass balance laws, model parameters
are therefore already known, which elegantly avoids the high
computational efforts required in system identification steps.
Stoichiometric model has been popular for over decades,
mainly thanks to the high interest in metabolic pathway
optimization as well as metabolic flux quantification[6], [7],
[8], [9]. However, the simplicity comes with a price. The

model itself is unable to elucidate regulation and manipulation
as well as positive or negative feedback between genotype
and phenotype. Nonlinear nature underlying the complex
mechanism therefore requires models capable of accounting
for nonlinear effects among them.

Typical modeling approach in biological system analysis
is formulated by a set of coupled ordinary differential e-
quations, which intend to delineate the relationship between
networks, metabolites and reaction fluxes involved [10]. The
conceptual framework enables these models to be further
classified as generalized mass-action-based models [11], [12]
and power-law models [13], [14]. Both model types involve
a good number of parameters, which obviously incur system
identifiability, observability and parameter estimation therein.
The most straightforward model is formulated by Michaelis-
Menten rate laws and their generalizations, delineating both
the inhibitory and activating effects between reactions among a
biological network. [15] is one typical example of these model
types, where the central metabolic network of Saccharomyces
cerevisiae was constructed upon the basis of 23 Michaelis-
Menten rate equations. Over 80 parameters were involved in
these rate equations, whose values mostly originated from
published literatures. The proposed model predicted both the
stationary and time-dependent metabolic states under in vivo
condition during glucose pulse experiments. However, as for
a ’younger’ microorganism whose study history is far much
shorter than that of the well-known Saccharomyces cerevisiae,
in very rare case can all of the parameters in its Michaelis-
Menten rate formats be handily available. Parameter estima-
tion is therefore often encountered in models based upon
Michaelis-Menten rate laws. However, most of the Michaelis-
Menten reaction rate laws are nonlinear and therefore incur
high computational efforts during system identification and pa-
rameter optimization. On contrary to cumbersome Michaelis-
Menten nonlinear model, S-system model [13], [16] has a
much regular yet flexible model format. A typical S-system
model has the following form:

dXi

dt
= ai

m∏

k=1

Xpk

ki − bi

n∏

l=1

Xql

il (1)

where Xi is concentration of the ith metabolite in a biological
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network. Xki represents the kth ancestor of metabolite Xi,
whereas Xil represents the lth descendant of Xi. m and n
are corresponding number of the ancestors and descendants
of Xi, respectively, ai and bi are coefficients of the model.
pk and ql are kinetic orders, respectively. S-system model
has virtually the capability of capturing any nonlinearity in
a system. Although its format can be presented easily for any
biological system, parameter estimation is again encountered
in S-system identification. Algorithms, for example, genetic
algorithm [17] and neural network [18] have been applied in
parameter estimation of a S-system. However, huge computa-
tional efforts and questioning of the parameter fitting results
keep exist. Lin-log and log-lin models [19] provide another
flexible representation of a biological system. Both of the two
models (whose formulations are not shown here for sake of
brevity) examine these states affinity to a specified reference
state. Both lin-log or log-lin and S-system models are special
cases of BST (Biochemical Systems Theory) [20].

In aforementioned models, linear stoichiometric model is
easy to formulate and perform any followed predictions.
However, lack of information about system dynamics is its
major disadvantage. S-system, lin-log and log-lin approaches
all require huge computational efforts and delicately con-
structed optimization algorithms to carry out model parameter
estimation. Their results are often questioned due to the
fact that the feasibility of these algorithms is still limited.
With the aim of metabolic engineering in mind, an intuitive
thought is then to investigate the impact of substrates on the
synthesized products, whereas, at the same time, account for
the reverse effect of major and side products on substrate
consumption. Traditional input-output data-based modeling as
well as the feedback system analysis methodology can be
adopted here seamlessly. Unfortunately, very rare research has
been conducted concerning this topic.

In this paper, Thermoanaerobacter sp. X514, which was
first discovered as a metal-reducing thermophilic anaerobe
[21], was taken as an example. X514 can ferment pentose
and hexose to produce ethanol at a simultaneous manner.
However, only few research work was done on X514 [22],
[23], [24], not to mention the sophisticated link between sub-
strate consumption and product formation. Adopting glucose
or xylose as the feeding substrates, the central objective of
this work is to propose an empirical and data-based input-
output modeling approach which can produce an accurate
whereas simple description of the relationship between glucose
or xylose, and the main products of X514, including ethanol,
acetate and lactate.

The paper is organized as follows: in Section 2, experi-
ment setup and the measuring procedure of the fermentation
experiment are described; in Section 3, the model structure,
model parameter estimation, model selection and validation
steps are presented at a detailed manner. Section 4 presents and
compares the fitting results and the model validation results
of the proposed methodology. Section 5 concludes the paper
and presents future prospectives.

II. EXPERIMENTS AND MODELS

A. Material and Methods

X514 (ATCC BAA-938) was received from Institute for
Environmental Genomics, University of Oklahoma, United
States. X514 was incubated under a N2 (99.99%) headspace in
a flask in the mineral medium which was a modified version
of the one used for Thermoanaerobacter pseudoethanolicus
ATCC 33223 by Wiegel [25] at 60◦C. The mineral medium
contained (per litre of distilled water) 4.2 g Na2HPO4·12H2O,
1.5 g KH2PO4, 1.0 g NH4Cl, 0.2 g MgCl2·6H2O, 10.0 ml
Wolfe’s mineral solution [26], 1.0 ml 0.1% (m/v) resazurin.
The mineral medium was autoclaved for 20 minutes at 115◦C.
Reducing agents which were composed of 5 g/l Na2S2O4 and
3 g/l NaHCO3 were injected into the medium by a syringe
after the basal medium was sterilized and cooled to room
temperature. glucose or xylose was injected into the mineral
medium at the start of the fermentation. All chemicals were
purchased from Amresoco, USB, Sigma or Sangon with high
purity.

Three experiments were carried out here with the substrates
being sole glucose, sole xylose, mixed glucose and xylose,
respectively. The initial concentrations of glucose and xy-
lose were both 2 g/L under the sole substrate conditions,
whereas their concentrations in the mixed substrates condition
were 1 g/L each. The sampling frequency is 4 hours per
sample. The experiments lasted for 60 hours. Concentrations
of the substrates, i.e., glucose or xylose, and the two main
products, acetate and lactate, were all measured by ionic
chromatography ics-3000 (Dionex, USA). Concentration of the
major product, ethanol, were measured by Megazyme Enzyme
Kit (Ireland). All experiments were performed in triplicate
cultures.

B. Data-based Modeling Methodology

It has been proved that under some mild conditions a
discrete-time or discretized continuous-time dynamical system
can be described by the following difference equation model

y(n) = f(y(n − 1), · · · , y(n − q), u(n − 1), · · · , u(n − p),

e(n), · · · , e(n − t)) (2)

where y(n), u(n) and e(n) are system output, input and noise
at the nth time step, respectively. p, q and t are the maximum
lags in the input, output and noise, respectively, and f(·) is
some unknown linear or nonlinear mapping between the input
and output signal. In terms of the linearity or nonlinearity
nature of the model, the model is termed AutoRegressive
with eXogenous inputs model (ARX), AutoRegressive Moving
Average with eXogenous inputs model (ARMAX) [27] or
Nonlinear AutoRegressive Moving Average with eXogenous
inputs model (NARMAX) [28], [29].

A general form of Eq. (2) with a nonlinear degree order d
is illustrated below, with the assumption that system noise is
independent identically distributed noise sequence e(n),
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y(n) = k0 +

r∑

i=1

kixi(n) +

r∑

i=1

r∑

j=1

kijxi(n)xj(n) + · · ·

+
r∑

i1=1

r∑

i2=1

· · ·
r∑

id=1

ki1i2···il
xi1(n)xi2(n) · · · xid

(n)

+e(n) (3)

where

r = p + q

xi(n) =

{
y(n − i) 1 ≤ i ≤ q
u(n − i + q) q + 1 ≤ i ≤ p + q

(4)

When none output terms are involved in the model shown
above, the time series chain is termed volterra series [30].
Though theoretically many modern terms can be involved in
the model above, in practice, only a few model terms are
needed. In this paper, a simplified model format is utilized,
which is shown in Eq. (5)

yl(k) = a0l +

m∑

i=1

ailϕi + e(k) (5)

Here m is the number of model terms, ai is the corresponding
model coefficient for the ith model term, and yl(k) is the
representation of the kth sample of the lth product, ie, ethanol,
lactate and acetate, respectively. Model order of 3 is enough to
incorporate most of the situation, therefore, the system model
order is set as 3 in this paper. Each ϕi is a combination of
the lagged versions of the input and output variables of the
system, whose term comes from the dictionary Φ with the
system model order of 3,

Φ = {1} ∪ {xi(n) : 1 ≤ i ≤ 3}
∪{xi(n)xj(n) : 1 ≤ i < j ≤ 3}
∪{xi(n)xj(n)xl(n) : 1 ≤ i < j < l ≤ 3}

(6)

with xi(n) defined as in Eq. (4).

C. Model Structure and Parameter Estimation

Though ordinary least squares approach [31] can be used
to perform parameter estimation when the model structure is
already known a prior with the assumption that the system
noise is in Gaussian, it is not applicable in the situation where
model structure and model parameters both require estimation.
A common approach to overcome the dilemma is by means of
Orthogonal Least Squares (OLS) method [32], which repeat-
edly estimates the model structure and parameters associate
with the specific structure in a forward regression manner.
OLS operates by representing a linear-in-the-parameter model
illustrated below

y(t) =
P∑

i=1

aiϕi(t) + e(t) (7)

with an auxiliary model given as

y(t) =
P∑

i=1

biwi(t) + e(t) (8)

where P is the number of candidate model terms involved in
the model and N is the number of data. When i ̸= j

N∑

t=1

wi(t)wj(t) = 0 (9)

Assume that
w0(t) = ϕ0(t) = 1 (10)

wi(t) is then

wi(t) = ϕi(t) −
i−1∑

j=1

bjiwj(t) (11)

i = 1, · · · , P and

aji =

∑N
t=1 ϕi(t)wj(t)∑N

t=1 w2
j (t)

(12)

The parameter bi can then be derived

bi =
E[y(t)wi(t)]

E[w2
j (t)]

(13)

Error Reduction Ratio (ERR) provides the criteria for model
candidate terms selection,

ERRi =
g2

i E[w2
i (t)]

E[y2(t)]
(14)

with

gi =
E[y(t)wi(t)]

E[w2
j (t)]

(15)

with predefined threshold η and θ, the criteria for selecting the
candidate model terms are then,

1 −
η∑

i=1

ERRi < θ (16)

where θ is the desired tolerance for the model terms. The
larger the ERRi is, the more significant the model term is.

D. Model selection

Since multiple models are suggested above, model selection
is a critical step in determining which model(s) fits the data
in an satisfactory level. Several criteria, for example Akaike
Information Criteria (AIC) [33] and the Bayesian Information
Criteria (BIC) [34] can be applied in model selection for
both linear and nonlinear models. In this paper, AIC with the
following format is used, whose formulation is given below,

AIC = 2k − 2ln(L) (17)
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where k is the number of the model parameters, L is the
likelihood of the model estimates. In the paper, the measure-
ment noise is assumed Gaussian distribution, L can then be
represented below,

L =
m∏

i=1

√
1

2πσ2
exp

(
−

m∑

i=1

(ŷl(i) − yl(i))
2

2σ2

)
(18)

where ŷl(i) is the estimated result of the ith product, yl(i), σ
is the standard deviation of the corresponding measurement.

III. RESULTS

The measurement data and the Model Predicted Outputs
(MPOs) for the three fermentation systems with different
substrates are illustrated in Fig. 1, 2 and 3, respectively.
Please note that MPO utilized here is different from one
step predicted output, where for the former case, the model
predictions obtained in each step are adopted to predict the
estimates in next step, whereas the latter case uses original
model measurements to predict the estimates in each step.
Therefore, even a very bad model could sometimes produce
nice fitting results in the latter case. However, MPO encom-
passes predicted error accumulation, therefore, is more robust
and reliable.

The corresponding functional forms of the three conditions
are illustrated in Eq. (19), (20) and (21), respectively. From
these models, it is clear that the studied systems are all
nonlinear and the history consumptions of the substrate(s) are
the only limiting factor of these studied products. However,
it is not sensible to conclude that there is no interaction be-
tween different products since the interaction can be indirectly
expressed through the input substrate.

y1(k) = 9.82 − 0.95u(k − 2) + 0.57u2(k − 2)

y2(k) = 5.29 − 0.52u(k − 2) + 0.03u2(k − 2)

y3(k) = 2.85 − 0.24u(k − 2) + 0.01u2(k − 2) (19)

y1(k) = −0.38u(k − 1) + 2.34u(k − 2)

−0.15u2(k − 2)

y2(k) = 0.94u(k − 2) − 0.07u2(k − 2)

y3(k) = 0.34u(k − 2) − 0.01u2(k − 1) (20)

y1(k) = 8.89 − 0.39u2(k − 3) − 0.04u3
1(k − 1)

y2(k) = 2.33 + 0.32u2(k − 3)

y3(k) = 0.67u2(k − 3) + 0.13u1(k − 3)u2(k − 3)

−0.03u2(k − 2)u2
2(k − 3) (21)

IV. CONCLUSION AND FUTURE PROSPECTS

This paper proposes an input-output model, which seam-
lessly links substrate consumption of X514 to its product
formation. Detailed model format and associated parameters
indicate underlying biological meaning between substrate and

product of X514. It is concluded that the yields of the
fermentation products of X514 are mainly driven by the sub-
strate consumptions. Meanwhile, there are strong interactions
between these products. Similar model structure can be applied
in both the case where the substrate is glucose and where the
substrate is xylose, which indicates the metabolic fermentation
similarity of X514 when glucose and/or xylose are substrates.

Mathematical modeling is of key importance in biological
system analysis, however, how to accommodate more general
conditions as well as more complex interactions are key
problems in this area. Future work should be focused on
finding out models which is applicable and robust in extensive
conditions. Furthermore, bioethanol optimization by means
of mathematical model should also be considered in future
research study.
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