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Abstract—Apoptosis is important for maintaining normal em-
bryonic development, tissue homeostasis and normal immune-
system operation in multicellular organisms. Its malfunction may
result in serious diseases such as cancer, autoimmunity, and
neurodegeneration. In apoptosis, tens of species are present in
many biochemical reactions with times scales of widely differing
orders of magnitude. According to the law of mass action,
apoptosis is usually described with a large and stiff system of
ODEs (ordinary differential equations). The goal of this work is
to derive a simple system of ODEs by using the classical PEA
(partial equilibrium approximation) method. For this purpose,
we firstly justify the mathematical correctness of the PEA in a
quite general framework. On the basis of this result, we simplify
the Fas-signaling pathway model proposed by Hua et al. (2005) by
assuming the fastness of several reversible reactions. Numerical
simulations and sensitivity analysis show that our simplification
model is reliable.

Keywords: Apoptosis, partial equilibrium approximation,
singular perturbation theory, the principle of detailed balance

I. INTRODUCTION

Apoptosis is one of the most basic biological processes.
It is a form of programmed cell death (PCD) and is an
everyday occurrence in tissue turnover. In apoptosis, superflu-
ous and potentially dangerous cells in multicellular organisms
are removed. This genetically regulated process ensures nor-
mal embryonic development, tissue homeostasis and normal
immune-system operation in multicellular organisms, includ-
ing humans. On the other hand, malfunction of apoptosis may
result in serious diseases such as cancer, autoimmunity, and
neurodegeneration [1], [2], [3], [4], [5]. For these reasons,
understanding the mechanism of apoptosis is of fundamental
importance.

Apoptotic cell death is triggered by extrinsic, receptor-
mediated, or intrinsic, mitochondria-mediated, signalling path-
ways that induce death-associated proteolytic and/or nucle-
olytic activities. The intrinsic pathway can be initiated by
many kinds of factors like the UV or genotoxic stress, which
lead to the damage of the cell. The extrinsic pathway is
activated by the death receptors such as TNF-R1(DR1,p55),
Fas(DR2,CD95), DR3(APO-3,TRAMP), DR4(APO-2,TRAIL-
R1) and DR5(TRICK2,TRAOL-R2) [1], [6], [7], [8].

The Fas signaling-induced pathway is the best characterized
and is schematically shown in Fig. 1. It begins with the binding
of Fas ligands (FasL), Fas and FADD (Fas-associated death

Fig. 1. The Fas-induced apoptotic pathway, including two channels.

domain) to form the complex DISC (death-inducing signaling
complex). The latter can recruits initiator caspases such as
caspase-8 (Casp8) molecules to cleave and activate them. The
activated initiator caspase (Casp8∗

2) can cleaves and activates
the executor caspase-3 (Casp3) to form Casp3∗ directly. The
amount of Cas3∗ is regarded as the indicator of apoptosis.
This way to activate Casp3 is called D-channel. In addition,
Casp3 can also be activated in a so-called M-channel. In this
channel, Casp8∗

2 acts as an enzyme and cleaves Bid to generate
truncated (t)Bid. The tBid then binds to two molecules of Bax
to form a complex tBid:Bax2, which will induce the release of
Cyto.c and Smac from the mitochondria. The released Cyto.c∗

will combine an adaptor protein Apaf-1, ATP and caspase-9 to
form apoptosome and thereby activate caspase-9. The activated
caspase-9 (Casp9∗) cleaves and activates Casp3. Here, besides
Casp8∗

2, the apoptosome and Casp9∗ act as enzymes as well.
On the other hand, the M-channel can be blocked by XIAP
(X-linked inhibitor of apoptosis protein) and Bcl2 through
their bindings to the released Smac*, Casp9, Casp3*, Bax
and tBid. For apoptosis of human tumor T cells, a detailed
reaction network has been given by Hua et al. in [9], with
complete reaction rate constants and initial data (see Tables I
and II below). By the way, Hua et al. obtained a conclusion,
consistent with previous experiments, that the effects of D-
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channel and M-channel can be altered by varying the amount
of Casp8∗

2 generated by DISC [10], [11], [12].
The above description indicates the complexity of the apop-

totic process. Indeed, this process involves tens of molecules
(species) and many many biochemical reactions. Once the law
of mass action [13] is employed, the process corresponds to a
simultaneous system of tens of ordinary differential equations
(ODEs). Such a large scale system of ODEs can hardly help us
to understand the mechanism of the apoptosis. It also prohibits
powerful mathematical treatments, including numerical ones.

The goal of this work is to present a mathematically effec-
tive reduction of the large system from [9]. Two widely used
methods for simplifying (bio-)chemical kinetics mechanisms
are the Quasi Steady-State Approximation(QSSA) [14], [15],
[16] and Partial Equilibrium Approximation(PEA) [17], [18],
[19]. The former assumes that the concentrations of reactive
intermediate species stop to change after a very short time
[20], while the latter assumes that some reactions are much
faster than others [21]. Although the two methods have been
used to simplify chemical kinetics mechanisms for many years
[13], [22], [23], [24], [25], they seem to lack a systematically
mathematical justification. Recently, we pointed out that the
PEA method can be rigorously justified for reversible reactions
obeying the principle of detailed balance [26], [27], by using
the singular perturbation theory of initial value problems for
ODEs [28], [29]. Thus, our reduction will base on this justified
PEA method and therefore are called to be stable.

In [30], Okazaki et al. derived a simplified model by
using both the QSSA and PEA methods together with some
empirical assumptions. For their derivation, they firstly divided
the whole network into two parts, the DISC subsystem (DSS)
and the intracellular-signaling subsystem (ISS), since the func-
tion of the DISC subsystem is only supplying Casp8∗

2 to
the remaining downstream part. Moreover, their simplification
neglects the effects of Smac and XIAP, which seems ok for
their initial data. In addition, the authors also divided the
simultaneous reactions in the ISS part into some independent
groups. For example, in applying the QSSA method for the
intermediate species Casp8∗

2:Casp3 (see formula (A.1) in Ap-
pendix A of [30]), they assumed that the concentration sum of
Casp8∗

2 and Casp8∗
2:Casp3 was conserved (A.2) and obtained

the Michaelis-Menten equation (A.4) for the product Casp3∗.
The latter is only true if Casp8∗

2 does not participate in other
reactions. However, this is not the case here because Casp8∗

2

is simultaneously involved in the reactions of generating tBid.
Namely, the reactions of generating tBid were considered in
[30] to be independent of those for the activation of Casp3
by Casp8∗

2. Similar conservation assumptions were used for
several steps, while the PEA method is used for a number
of reversible reactions. In this way, they simplified the ISS
subsystem to obtain a so-called ISS skeleton model. Although
the ISS skeleton model may describe the dominant role of
Casp8∗

2 to the two channels, its derivation seems ad hoc and
baseless.

In this paper, we use the PEA method and obtain a simpli-
fied model from the entire intracellular-signaling subsystem.

This simplification is based on the fact that there are large
variances in time scales among different reactions, making the
ODE system stiff. In doing this, we firstly show, by using dif-
ferent initial data, that Smac and XIAP are often not negligible.
Then we check the principle of detailed balance for the fast
reactions as a whole and derive our simplified model. Through
numerical simulations, we compare this new model with the
original ISS model and Okazaki et al.’s skeleton model [30]
from various aspects, including accuracy, sensitivity and M-D
transition behavior. Moreover, we introduce a new quantity to
evaluate the new model. All these numerical results show the
reliability of both our simplified model and the PEA method.

However, the present simplification is preliminary and more
will be reported in a forthcoming paper. We believe that
the framework presented here is useful for simplifying other
biochemical systems as well as the apoptosis problem.

The paper is organized as follows. In Section 2 we present
the entire ISS and show, by using different initial data, that
Smac and XIAP are often not negligible. Section 3 gives
details of the simplification from the entire ISS model by
checking the principle of detailed balance. Numerical simu-
lations are reported in Section 4. Finally, some conclusions
and comments are summarized in Section 5.

II. THE INTRACELLULAR-SIGNALING SUBSYSTEM

The Fas-signaling pathway model proposed by Hua et at. [9]
is chemically expressed as in Table 1. As in Okazaki et al.[30],
our simplification will be directed to the intracellular-signaling
subsystem (ISS)—the downstream process of apoptosis, since
this part is quite independent of the upstream process initiated
by FasL to activate Casp8. Moreover, we follow [30] and
assume that the concentration of ATP is a fixed constant. Thus,
there are 28 species and 19 biochemical reactions involved in
the downstream process.

According to the law of mass action [13], the dynamics of
the ISS is governed by 28 ordinary differential equations

dU

dt
= Q(U), (1)

where U is a column vector with 28 components representing
the concentrations of all the 28 species in the ISS:

U =
(
[Casp8∗

2], [Casp8∗
2 : Casp3], [Casp8∗

2 : Bid], [Bid],
[tBid], [tBid : Bax], [tBid : Bax2], [Bcl2 : tBid],
[Bax], [Bcl2 : Bax], [Bcl2], [Cyto.c], [Cyto.c∗],
[Cyto.c∗ : Apaf : ATP ],
[Cyto.c∗ : Apaf : ATP : Casp9],
[Cyto.c∗ : Apaf : ATP : Casp92],
[Apaf ], [Casp9∗], [Casp9], [Casp3],
[Casp9∗ : Casp3], [Casp3∗], [Smac], [Smac∗],
[XIAP ], [Smac∗ : XIAP ], [Casp9 : XIAP ],

[Casp3∗ : XIAP ]
)T

.

Here [S] denotes the concentration of the substance S.
For example, [Casp8∗

2] is the concentration of the substance
Casp8∗

2. Cyto.c∗ and Smac∗ denote Cyto.c and Smac released
to cytosol from mitochondrial, respectively, and Apaf stands
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TABLE I
THE FAS-SIGNALING PATHWAY MODEL DUE TO HUA ET AT. (2005)

Reaction kHi k−Hi

(H1) F asL + F as
kH1

GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

k−H1

F asC 9.09 × 10−5nM−1s−1 1.00 × 10−4

(H2) F asC : F ADDp : Casp8q : F LIPr + F ADD
kH2

GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

k−H2

F as : F ADDp+1 : Casp8q : F ILPr 5.00 × 10−4nM−1s−1 0.2

(H3) F asC : F ADDp : Casp8q : F ILPr + Casp8
kH3

GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

k−H3

F as : F ADDp : Casp8q+1 : F ILPr 3.50 × 10−3nM−1s−1 0.018

(H4) F asC : F ADDp : Casp8q : F LIPr + F ILP
kH4

GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

k−H4

F as : F ADDp : Casp8q : F ILPr+1 3.50 × 10−3nM−1s−1 0.018

(H5) F asC : F ADDp : Casp8q : F LIPr

kH5
GGGGGGGGGGGGGGGA Casp8∗2 : p41 + F asC : F ADDp : Casp8q−1 : F ILPr 0.3s−1

(H6) Casp8∗
2

: p41
kH6

GGGGGGGGGGGGGGGA Casp8∗
2

0.1s−1

(H7) Casp8∗
2

+ Casp3
kH7

GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

k−H7

Casp8∗
2

: Casp3 1.00 × 10−4nM−1s−1 0.06

(H8) Casp8∗
2

: Casp3
kH8

GGGGGGGGGGGGGGGA Casp8∗
2

+ Casp3∗ 0.1s−1

(H9) Casp8∗
2

+ Bid
kH9

GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

k−H9

Casp8∗
2

: Bid 5.00 × 10−4nM−1s−1 0.005

(H10) Casp8∗
2

: Bid
kH10

GGGGGGGGGGGGGGGGGGA Casp8∗
2

+ tBid 0.1s−1

(H11) tBid + Bax
kH11

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H11

tBid : Bax 2.00 × 10−4nM−1s−1 0.02

(H12) tBid : Bax + Bax
kH12

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H12

tBid : Bax2 2.00 × 10−4nM−1s−1 0.02

(H13) Smac + tBid : Bax2

kH13
GGGGGGGGGGGGGGGGGGA Smac∗ + tBid : Bax2 1.00 × 10−3nM−1s−1

(H14) Smac∗ + XIAP
kH14

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H14

Smac∗ : XIAP 7.00 × 10−3nM−1s−1 2.21 × 10−3

(H15) Cyto.c + tBid : Bax2

kH15
GGGGGGGGGGGGGGGGGGA Cyto.c∗ + tBid : Bax2 1.00 × 10−3nM−1s−1

(H16) Cyto.c∗ + Apaf + AT P
kH16

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H16

Cyto.c∗ : Apaf : AT P 2.78 × 10−7nM−1s−1 5.70 × 10−3

(H17) Cyto.c∗ : Apaf : AT P + Casp9
kH17

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H17

Cyto.c∗ : Apaf : AT P : Casp9 2.84 × 10−4nM−1s−1 0.07493

(H18) Cyto.c∗ : Apaf : AT P : Casp9 + Casp9
kH18

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H18

Cyto.c∗ : Apaf : AT P : Casp92 4.41 × 10−4nM−1s−1 0.1

(H19) Cyto.c∗ : Apaf : AT P : Casp92

kH19
GGGGGGGGGGGGGGGGGGA Cyto.c∗ : Apaf : AT P : Casp9 + Casp9∗ 0.7s−1

(H20) Casp9∗ + Casp3
kH20

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H20

Casp9∗ : Casp3 1.96 × 10−5nM−1s−1 0.05707

(H21) Casp9∗ : Casp3
kH21

GGGGGGGGGGGGGGGGGGA Casp9∗ + Casp3∗ 4.8s−1

(H22) Casp9 + XIAP
kH22

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H22

Casp9 : XIAP 1.06 × 10−4nM−1s−1 1.00 × 10−3

(H23) Casp3∗ + XIAP
kH22

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H22

Casp3∗ : XIAP 2.47 × 10−3nM−1s−1 2.40 × 10−3

(H24) Bcl2 + Bax
kH24

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H24

Bcl2 : Bax 2.00 × 10−4nM−1s−1 0.02

(H25) Bcl2 + tBid
kH25

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

k−H25

Bcl2 : tBid 2.00 × 10−4nM−1s−1 0.02
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TABLE II
INITIAL CONCENTRATIONS OF EACH SPECIES IN THE ISS MODEL (HUA.

ET AL. 2005)

Species Initial concentration(nM)
Casp3 200.00
Bid 25.00
Bcl2 75.00
Bax 83.33
Cyto.c 100.00
Smac 100.00
XIAP 30.00
Casp9 20.00
ATP 10000.00
Apaf 100.00

for Apaf-1. Each element of the vector-valued function Q(U)
of U is the rate change of concentration to the corresponding
species:

Q(U) =
(

− v7 + v8 − v9 + v10 + v0, v7 − v8, v9 − v10,
−v9, v10 − v11 − v25, v11 − v12, v12, v25,
−v11 − v12 − v24, v24, −v24 − v25, −v15,
v15 − v16, v16 − v17, v17 − v18 + v19, v18 − v19,
−v16, v19 − v20 + v21, −v17 − v18 − v22,
−v7 − v20, v20 − v21, v8 + v21 − v23, −v13,

v13 − v14, −v14 − v22 − v23, v14, v22, v23

)T
,

where vi(i = 7 · · · 25) is the rate of the i-th reaction in Table
1:
v7 = kH7[Casp8∗

2
][Casp3] − k−H7[Casp8∗

2
: Casp3],

v8 = kH8[Casp8∗
2

: Casp3],

v9 = kH9[Casp8∗
2
][Bid] − k−H9[Casp8∗

2
: Bid],

v10 = kH10[Casp8∗
2

: Bid],

v11 = kH11[tBid][Bax] − k−H11[tBid : Bax],

v12 = kH12[tBid : Bax][Bax] − k−H12[tBid : Bax2],

v13 = kH13[Smac][tBid : Bax2],

v14 = kH14[Smac∗][XIAP ] − k−H14[Smac∗ : XIAP ],

v15 = kH15[Cyto.c][tBid : Bax2],

v16 = kH16[Cyto.c∗][Apaf ][ATP ]
−k−H16[Cyto.c∗ : Apaf : ATP ],

v17 = kH17[Cyto.c∗ : Apaf : ATP ][Casp9]
−k−H17[Cyto.c∗ : Apaf : ATP : Casp9],

v18 = kH18[Cyto.c∗ : Apaf : ATP : Casp9][Casp9]
−k−H18[Cyto.c∗ : Apaf : ATP : Casp92],

v19 = kH19[Cyto.c∗ : Apaf : ATP : Casp92],

v20 = kH20[Casp9∗][Casp3] − k−H20[Casp9∗ : Casp3],

v21 = kH21[Casp9∗ : Casp3],

v22 = kH22[Casp9][XIAP ] − kH−22[Casp9 : XIAP ],

v23 = kH23[Casp3∗][XIAP ] − k−H23[Casp3∗ : XIAP ],

v24 = kH24[Bcl2][Bax] − k−H24[Bcl2 : Bax],

v25 = kH25[Bcl2][tBid] − k−H25[Bcl2 : tBid],

v0 is a constant rate of generation for Casp8∗
2 from the

upstream process and its value was suggested in [30] as
v0 = 0.001nMs−1. Note that none of the reactions will occur
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Fig. 2. Comparison of the ISS model(red asterisk) and the ISS(wo/S,X)
model (blue dot). The initial concentrations are from Table. II. (a): Casp3∗

as a function of time t. (b): γD as a function of the generation rate v0

if Casp8∗
2 has no a source. In addition, the non-zero initial

concentrations for U are taken as in [9], [30] and are given in
Table II.

With the above data, Okazaki et al. [30] investigated the
M-D transition behavior of the ISS and ISS(wo/S,X) (without
Smac and XIAP). Namely, when a large amount of Casp8∗

2

is activated from upstream, it will directly induce cell death
through the D-channel; otherwise, the M-channel plays more
important role for cell death. In doing this, they introduced a
quantity γD to characterize the net production rate of Casp3∗

by the D-channel. By numerical simulations, they claimed that
Smac and XIAP have little effect on the reaction process of the
ISS and therefore they did not consider the related reactions
in their simplification. We repeat their numerical results (see
Fig. 2) and agree with that their claim is reasonable for the
above data.

However, with different initial concentrations we get dif-
ferent results by solving the two systems numerically. Fig. 3
displays the result with the initial value of [Bax] divided by
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Fig. 3. Comparison of the ISS model(red asterisk) and the ISS(wo/S,X)
model (blue dot) with the initial value of [Bax] being that in Table 2 divided
by 10 and others unchanged. (a): Casp3∗ as a function of time t. (b): γD as
a function of the generation rate v0

10 and others kept as in Table 2, while the curves in Fig. 4 are
those with the initial value of [XIAP] multiplied by 10 and
others kept as in Table 2. Both Fig. 3 and Fig. 4 show that
the ISS(wo/S,X) model is different from the ISS model. We
have tested many sets of initial data and most of the numerical
results confirm the difference. In conclusion, Smac and XIAP
should not be ignored and our simplification will base on the
entire ISS system.

III. SIMPLIFICATION

In this section we derive our simplified model by using the
singular perturbation theory [27], [29] to the system of 28
ODEs (2.1).

Motivated by the simplification process in [30], we regard
the six reversible reactions (H11), (H12), (H16), (H17), (H24)
and (H25) in Table 1 as fast and the rest as slow. Accordingly,
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Fig. 4. Comparison of ISS model(red asterisk) and ISS(wo/S,X) model (blue
dot) with the initial value of [XIAP ] being that in Table 2 multiplied by 10
and others unchanged. (a): Casp3∗ as a function of time t. (b): γD as a
function of the generation rate v0

we decompose the concentration vector U as

U =

⎛
⎝

X
Y
Z

⎞
⎠ ,

with X the products of the six reactions, Y the reactants and
Z the rest:

X =
(
[tBid : Bax], [tBid : Bax2], [Bcl2 : tBid],
[Bcl2 : Bax], [Cyto.c∗ : Apaf : ATP ],

[Cyto.c∗ : Apaf : ATP : Casp9]
)T

,

Y =
(
[tBid], [Bax], [Bcl2], [Cyto.c∗], [Apaf ], [Casp9]

)T
,

Z =
(
[Casp8∗

2], [Casp8∗
2 : Casp3], [Casp8∗

2 : Bid], [Bid],
[Cyto.c], [Cyto.c∗ : Apaf : ATP : Casp92],
[Casp9∗], [Casp3], [Casp9∗ : Casp3], [Casp3∗],
[Smac], [Smac∗], [XIAP ], [Smac∗ : XIAP ],

[Casp9 : XIAP ], [Casp3∗ : XIAP ]
)T

.
(2)
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With this decomposition, the kinetic equations in (1) can be
rewritten as

dX

dt
=

1

ε
Q̂1(X, Y ) + Q1(X, Y, Z),

dY

dt
=

1

ε
Q̂2(X, Y ) + Q2(X, Y, Z),

dZ

dt
= Q3(X, Y, Z).

(3)

Here ε is a small positive parameter characterizing the fastness,

Q̂1(X, Y ) = ε
(
v11 − v12, v12, v25, v24, v16 − v17, v17

)
,

Q̂2(X, Y ) = ε
(

− v11 − v25, −v11 − v12 − v24,

−v24 − v25, −v16, −v16, −v17

)T

stand for the rates of concentration change due to the rapid
reactions, and

Q1(X, Y, Z) =
(
0, 0, 0, 0, 0, −v18 + v19

)T
,

Q2(X, Y, Z) =
(
v10, 0, 0, v15, 0, −v18 − v22

)T
,

Q3(X, Y, Z) =
(

− v7 + v8 − v9 + v10, v7 − v8, v9 − v10,
−v9, −v15, v18 − v19, v19 − v20 + v21,
−v7 − v20, v20 − v21, v8 + v21 − v23,
−v13, v13 − v14, −v14 − v22 − v23, v14,

v22, v23

)T

represent those from the slow reactions. Note that Q̂1(X, Y )
is same as Qi(X, Y, Z)(i = 1, 2, 3) in order of magnitude. It
is direct to check that

Q̂2(X, Y ) + CQ̂1(X, Y ) ≡ 0 (4)

with C the following constant 6x6-matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 2 0 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Notice that the six fast reactions are reversible and, as a
whole, they obey the principle of detailed balance. In fact, it
is clear that Q̂1(X, Y ) = 0 = Q̂2(X, Y ) are equivalent to
v11 = v12 = v16 = v17 = v24 = v25 = 0. Recall that

v11 = kH11[tBid][Bax] − k−H11[tBid : Bax],

v12 = kH12[tBid : Bax][Bax] − k−H12[tBid : Bax2],

v16 = kH16[Cyto.c∗][Apaf ][ATP ]
−k−H16[Cyto.c∗ : Apaf : ATP ],

v17 = kH17[Cyto.c∗ : Apaf : ATP ][Caps9]
−k−H17[Cyto.c∗ : Apaf : ATP : Casp9],

v24 = kH24[Bcl2][Bax] − k−H24[Bcl2 : Bax],

v25 = kH25[Bcl2][tBid] − k−H25[Bcl2 : tBid].
(5)

Then for any given

Y =
(
[tBid], [Bax], [Bcl2], [Cyto.c∗], [Apaf ], [Casp9]

)T

with all six components positive, we can use (5) to get

X =
(
[tBid : Bax], [tBid : Bax2], [Bcl2 : tBid],
[Bcl2 : Bax], [Cyto.c∗ : Apaf : ATP ],

[Cyto.c∗ : Apaf : ATP : Casp9]
)T

,

with all six components positive, such that v11 = v12 = v16 =
v17 = v24 = v25 = 0. Therefore, the principle of detailed
balance is verified.

Once the principle of detailed balance is verified, we know
from [27] that the singular perturbation theory [29] of initial-
value problems applies to the stiff system of ODEs in (3).
In particular, the solutions to initial-value problems of (3)
converge uniformly to those of a reduced system of ODEs,
as ε goes to zero, in any bounded time interval away from
zero.

In order to derive the reduced system, we refer to (4) and
define

Ỹ = Y + CX,

that is,

Ỹ =
(
[tBid] + [tBid : Bax] + [tBid : Bax]

+[Bcl2 : tBid],
[Bax] + [tBid : Bax] + 2[tBid : Bax2]

+[Bcl2 : Bax],
[Bcl2] + [Bcl2 : tBid] + [Bcl2 : Bax],
[Cyto.c∗] + [Cyto.c∗ : Apaf : ATP ]

+[Cyto.c∗ : Apaf : ATP : Casp9],
[Apaf ] + [Cyto.c∗ : Apaf : ATP ]

+[Cyto.c∗ : Apaf : ATP : Casp9],

[Casp9] + [Cyto.c∗ : Apaf : ATP : Casp9]
)T

.

Then the ODEs in (3) become

dX

dt
=

1

ε
Q̃1(X, Y ) + Q1(X, Y, Z),

dỸ

dt
= Q2(X, Y, Z) + CQ1(X, Y, Z),

dZ

dt
= Q2(X, Y, Z).

(6)

As ε goes to zero, Q̃1(X, Y ) is forced to vanish, from which
we get the following algebraic equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v11 = kH11[tBid][Bax] − k−H11[tBid : Bax] = 0,

v12 = kH12[tBid : Bax][Bax] − k−H12[tBid : Bax2] = 0,

v16 = kH16[Cyto.c∗][Apaf ][ATP ]
−k−H16[Cyto.c∗ : Apaf : ATP ] = 0,

v17 = kH17[Cyto.c∗ : Apaf : ATP ][Caps9]
−k−H17[Cyto.c∗ : Apaf : ATP : Casp9] = 0,

v24 = kH24[Bcl2][Bax] − k−H24[Bcl2 : Bax] = 0,

v25 = kH25[Bcl2][tBid] − k−H25[Bcl2 : tBid] = 0.

These algebraic equations can be easily solved as

[tBid : Bax] =
kH11[tBid][Bax]

k−H11
= KH11[tBid][Bax],
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[tBid : Bax] =
kH11[tBid][Bax]

k−H11
= KH11[tBid][Bax],

[Cyto.c∗ : Apaf : ATP ] = kH16[Cyto.c∗][Apaf ][ATP ]
k−H16

= KH16[Cyto.c∗][Apaf ][ATP ],

[Cyto.c∗ : Apaf : ATP : Casp9]

= kH17[Cyto.c∗:Apaf :ATP ][Casp9]
k−H17

= KH17KH16[Cyto.c∗][Apaf ][ATP ][Casp9],

[Bcl2 : Bax] =
kH24[Bcl2][Bax]

k−H24
= KH24[Bcl2][Bax],

[Bcl2 : tBid] =
kH25[Bcl2][tBid]

k−H25
= KH25[Bcl2][tBid]

with KHi = kHi/k−Hi for i = 11, 12, 16, 17, 24, 25. These
relations can be written as X = Φ(Y ).

Substituting X = Φ(Y ) into the second and third equations
in 6, we obtain

⎧
⎪⎨
⎪⎩

dỸ

dt
= Q2(Φ(Y ), Y, Z) + CQ1(Φ(Y ), Y, Z),

dZ

dt
= Q3(Φ(Y ), Y, Z).

On the other hand, from Ỹ = Y + CX = Y + CΦ(Y ) we
compute the time derivative of Ỹ :

dỸ

dt
=

dY

dt
+ CΦ(Y )Y

dY

dt
,

where Φ(Y )Y represents the Jacobian matrix of Φ(Y ). Denote
by I6 the unit matrix of order 6. According to the general
theory developed in [27], the 6x6-matrix [I6 + CΦ(Y )Y ] is
always invertible. Thus we gain equations for Y :

dY

dt
= (I6 + CΦ(Y )Y )−1 dỸ

dt

= (I6 + CΦ(Y )Y )−1(Q2(Φ(Y ), Y, Z)
+CQ1(Φ(Y ), Y, Z)).

Consequently, the original system of 28 ODEs is reduced to
the following 22 ODEs

dY

dt
= (I6 + CΦ(Y )Y )−1(Q2(Φ(Y ), Y, Z)

+CQ1(Φ(Y ), Y, Z)),

dZ

dt
= Q3(Φ(Y ), Y, Z)

(7)
together with 6 algebraic relations

X = Φ(Y ).

Recall that Y and Z are defined in (2). This system of 22
ODEs is our simplified model—a preliminary simplification
of the ISS model. From now on, we call this simplified model
(7) as PSISS model.

IV. SIMULATION RESULTS

In this section we report some numerical results to compare
our PSISS model with the ISS model and Okaxaki et al.’s ISS
skeleton model (See Table III). The calculations were done
with Matlab.
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Fig. 5. Comparison of the ISS model (red asterisk), the skeleton model (blue
open circle) and our PSISS model (green dot). The initial concentrations are
from Table II. (a): the curves of Casp3∗ for 15 hours. (b): the curves of
Casp3∗ for 5 hours.

A. Accuracy of the PSISS model

As a first step, we compute the concentration of each species
as functions of time t, with the initial concentrations from
Table II, by using the entire ISS model, the ISS skeleton model
and our PSISS model. Fig. 5 displays the curves for Casp3∗ as
functions of time t. From these figures, especially Fig. 5(b), we
see that the PSISS model and the ISS model give almost the
same curves and equilibrium value for Casp3∗, while what the
skeleton model yields are different. This conclusion is further
supported by the curves for other species. For example, we
see Fig. 6 for the curves of Casp3 and Casp9∗ as functions of
time t. These numerical results show that our PSISS model is
closer to the original ISS model than the skeleton model.

B. M-D transition behavior

In Section 2, we have explained the M-D transition behavior
and discussed the curves of γD as a function of the generation
rate v0 for the ISS model and the ISS(wo/S,X) model. Another
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TABLE III
THE ISS SKELETON MODEL DUE TO OKAZAKI ET AL. (2008)

Reaction Rate constant

(S1) Casp8∗
2

+ Casp3GGGGGA Casp8∗
2

+ Casp3∗ 6.25.00 × 10−6nM−1s−1

(S2a) Casp8∗
2

+ BidGGGGGA Casp8∗
2

+ 0.0328tBid : Bax2 vS2a =
ka[Casp8∗

2
][Bid]

[Casp8∗
2
]+Ka

(ka = 0.1s−1, Ka = 20nM)

(S2b) Cyto.c + tBid : Bax2GGGGGA 0.867Cyto.c∗ : Apaf : AT P + tBid : Bax2 1 × 10−3nM−1s−1

(S2c) Cyto.c∗ : Apaf : AT P + 2Casp9GGGGGA Cyto.c∗ : Apaf : AT P + Casp9 + Casp9∗ 1.46 × 10−6nM−1s−1

(S2d) Casp9∗ + Casp3GGGGGA Casp9∗ + Casp3∗ 1.96 × 10−5nM−1s−1
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Fig. 6. Comparison of the ISS model (red asterisk), the skeleton model (blue
open circle) and our PSISS model (green dot). (a): the curves of Casp3 as
functions of t. (b): the curves of Casp9∗ as functions of t.

important observation related to the M-D transition behavior
is that the initial concentration of Casp9 have a great impact
to this behavior. To expose this observation, a new quantity
vC
0 was introduced in [30] to represent the critical value of

v0 corresponding to γD = 0.5. By its definition, γD = 0.5
means that the effect of the M-channel is same as that of the
D-channel.

Here we explore the M-D transition behavior of our PSISS

model and compare it with the ISS and skeleton model on this
property. To this end, we exhibit the results of the three models
in Fig. 7(a). Moreover, the curves of vC

0 as a function of the
initial concentration of Casp9 are shown in Fig. 7(b). These
two figures show that our PSISS model is in a better agreement
with the original ISS model than the skeleton model. In
particular, Fig. 7(b) indicates that the PSISS model essentially
improves the skeleton model for large initial concentrations of
Casp9.

C. Sensitivity Analysis

In [9], Hua et al. used sensitivity analysis to show that
increasing or decreasing the expression levels of a molecule
can have an asymmetrical effects on the signaling outcome.
The outcome they cared about is how fast Casp3 becomes
activated and the half-time for activating Casp3 was used
to quantify the outcome. Here we analyze the sensitivity of
the ISS model, the skeleton model and our simplified model
PSISS. What different from [9] is that our sensitivity analysis
is only about the molecules in the downstream process. The
baseline values of the species are those in Table II. The
numerical results for the three models are shown in Fig. 8.

From Fig. 8, we see that our PSISS model is very similar
to the ISS model, except a little difference for Bcl2. Though
the half-time changes slightly for Bcl2, the asymmetry is
preserved. Overall, our PSISS model behaves obviously better
than the ISS skeleton model does.

As a new aspect of the sensitivity analysis for our simplifi-
cation, we also examine the equilibrium values of Casp3∗—the
indicator of apoptosis, by changing the initial concentration of
every species. From this purpose, we introduce a new quantity
as follows

αC3∗ =
[Casp3∗] at equilibrium for PSISS

[Casp3∗] at equilibrium for ISS
.

When initial concentrations of some species are changed, αC3∗

will likely change too. For a good simplified model, such a
quantity should be close to one.

We compute αC3∗ from our PSISS model with initial con-
centrations changed for each species, including Casp3∗. The
result is given in Fig. 9, illustrating that αC3∗ is insensitive to
most of initial concentration changes, except a little sensitivity
for Bcl2 and Bax. In total, αC3∗ is almost free from the
influence of the initial concentration changes. This further
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Fig. 7. M-D transition comparison of the ISS model (red asterisk), the
skeleton model (blue open circle) and the PSISS model (green dot). (a): M-D
transition behavior due to Casp8∗

2 . (b): M-D transition behavior due to Casp9.

reveals the reliability of our simplified model and the PEA
method.

V. CONCLUSIONS

In this paper, we derive the PSISS model by strictly applying
the PEA method to the ISS model proposed by Hua et al.
(2005). Through numerical simulations, we compare this new
model with the original ISS model and Okazaki et al.’s skele-
ton model from various aspects, including accuracy, sensitivity
and M-D transition behavior. Moreover, we introduce a new
quantity αC3∗ to evaluate the new model. All these numerical
results show the reliability of both our simplified model and
the PEA method.

The new simplified model consists of ODEs. It is desirable
to write down the corresponding biochemical reactions and
thereby provide a new understanding of the apoptosis mecha-
nism.

The present simplification is preliminary and further results
will be reported in a forthcoming paper. We believe that
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(a) Half-time for activating Casp3∗ with the ISS model
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(b) Half-time for activating Casp3∗ with the skeleton model
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Fig. 8. Sensitivity analysis of the ISS model, the skeleton model and the
PSISS model. The overexpression or knockdown level of each species is
changed one or two orders of magnitude while the others unchanged.
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Fig. 9. The change of αC3∗ to different initial concentrations. The
overexpression or knockdown level of each species is changed one or two
orders of magnitude once while the others unchanged.

the framework presented here is useful for simplifying other
biochemical systems as well as the apoptosis problem.
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