
A machine learning framework of functional 

biomarker discovery for different microbial 

communities based on metagenomic data 
 

Wei Fang
1,2

, Xingzhi Chang
2
, Xiaoquan Su

2
, Jian Xu

2
, Deli Zhang

1,
* and Kang Ning

2,
* 

 
1
 Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College 

of Life Science, and Research Laboratory of Virology, Immunology & Bioinformatics, Department of Preventive Veterinary 

Medicine, College of Veterinary Medicine,Northwest A & F University, Yangling 712100, Xi’an City, Shaanxi, P.R. China 
2
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P.R. China 

*Contact: zhangdeli@tsinghua.org.cn, ningkang@qibebt.ac.cn 

 

 
Abstract—As more than 90% of microbial community could 

not be isolated and cultivated, the metagenomic methods have 

been commonly used to analyze the microbial community as a 

whole. With the fast acumination of metagenomic samples, it is 

now intriguing to find simple biomarkers, especially functional 

biomarkers, which could distinguish different metagenomic 

samples. Next-generation sequencing techniques have enabled 

the detection of very accurate gene-presence (abundance) values 

in metagenomic studies. And the presence/absence or different 

abundance values for a set of genes could be used as appropriate 

biomarker for identification of the corresponding microbial 

community’s phenotype. However, it is not yet clear how to 

select such a set of genes (features), and how accurate would it 

be for such a set of selected genes on prediction of microbial 

community’s phenotype. In this study, we have evaluated 

different machine learning methods, including feature selection 

methods and classification methods, for selection of biomarkers 

that could distinguish different samples. Then we proposed a 

machine learning framework, which could discover biomarkers 

for different microbial communities from the mining of 

metagenomic data. Given a set of features (genes) and their 

presence values in multiple samples, we first selected 

discriminative features as candidate by feature selection, and 

then selected the feature sets with low error rate and 

classification accuracies as biomarkers by classification method. 

We have selected whole genome sequencing data from 

simulation, public domain and in-house metagenomic data 

generation facilities. We tested the framework on prediction and 

evaluation of the biomarkers. Results have shown that the 

framework could select functional biomarkers with very high 

accuracy. Therefore, this framework would be a suitable tool to 

discover functional biomarkers to distinguish different 

microbial communities. 

Keywords-metagenomic, biomarker, machine learning, 

ReliefF,  mRMR 

I.  INTRODUCTION  

The total number of microbial cells on earth is huge: 
approximate estimation of them is 10

30
 [1], and the genomes 

of these vastly unknown communities of microbes might 
contain a large number of novel genes with useful functions. 
However, more than 90% of microbe species were unknown 
and un-cultivable[1], making traditional isolation and 

cultivation process non-applicable. Analysis of their 
metagenomic data is the direct and efficient way to analyze all 
microbes in the community[2]. The metagenomic approach 
has made it possible better understanding of microbial 
diversity as well as their functions. And the broad applications 
of metagenomic research, including environmental sciences, 
bioenergy research and human health, have made it an 
increasingly popular research area. Faced with the rapidly 
increasing number of metagenomic samples, it is now very 
important to easily distinguish these samples, for multiple 
purpose including quick environment test, medical diagnosis, 
etc. As such, assignments of biomarkers, especially functional 
biomarkers, for different microbial communities become an 
increasing critical issue.  

Currently, there are several metagenomic biomarker 
projects been conducted, namely Metastats[3] and LEfSe[4], 
etc. These methods are based on statistical analysis methods, 
so they require a relatively large number of samples to 
discover biomarkers. For example, for LEfSe, when few 
samples are available, Wilcoxon test is performed based only 
on the median values of the samples. 

As previous studies on gene expression analysis have 
already provided us with a set of effective methods to select 
representative features (genes) that could distinguish different 
samples, these methods could give us hints on functional 
feature selection methods for metagenomic samples. However, 
there exists differences in the properties of metagenomic data 
and gene expression data: besides the high data dimensions, 
metagenomic data additionally present their own specific 
issues, including sequencing errors, chimeric reads, and 
complex underlying biology; many microbial communities 
have been found to show remarkably high inter-subject 
variability. In this work, we have a systematic study of the 
feasibility and applicability of using the machine learning 
methods to analysis metagenomic dataset. Firstly, we have 
evaluated different methods for feature selection (ReliefF[5] 
and mRMR[6]) and classification (KNN[7] and SVM[8, 9]) 
that could, combined together, select features to distinguish 
different types of samples. Secondly, based on these 
evaluations, we have proposed a biomarker discovery 
framework to differentiate microbial communities based on 
metagenomic data. The framework is based on functional 

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

106 Xi’an, China, August 18–20, 2012



profiles generated from the metagenomic data, either based on 
microarray profiling results from techniques such as 
Geochip[10], or based on whole genome sequencing results. It 
selects discriminative features as candidate features, and then 
selects and evaluates a subset of these features with low error 
rate and classification accuracies as biomarkers. Finally, we 
have manually evaluated the biomarkers selected by 
evaluating the functions and/or other biological significance 
of each biomarker. 

This general procedure is simple in principle, yet it is 
significantly different from previous biomarker discovery 
methods. Firstly, it is different from traditional biomarker 
discovery method for their different objectives: traditional 
method could identify biomarkers that could distinguish 
different species, while the framework is designed for 
discover biomarkers that could differentiate microbial 
communities. Secondly, it is different from previous 
metagenomic biomarker methods in that the final results 
would be a set of few features (genes), rather than a complex 
taxonomy structure or a set of many biological meaningful 
features. Thirdly, it is different from the non-machine learning 
method such as t-test [24], in that it is a machine-learning 
method that is supervised and has modules for feature 
selection, and the number of biomarkers to be selected could 
be controlled (though depend on different error rate tolerance 
of the end-users). 

II. METHODS 

A. Feature selection and classification methods 

The overall functional biomarker discovery pipeline 
includes feature selection step and classification step. For the 
feature selection step, a number of candidate features would 
be selected that could discriminate different samples. For 
classification step, the discrimination power of these 
candidate features would be evaluated and further filtered (Fig. 
1). 

 

Figure 1. The overall scheme of feature selection and classification 
framework for functional biomarker discovery from metagenomic data. 

1) Feature selection method: Both ReliefF and mRMR 

methods are considered good feature selection methods to 

select candidate features. The key idea of ReliefF algorithm 

is is to estimate the quality of attributes according to how 

well their values distinguish between instances that are near 

to each other. The minimum Redundancy Maximum 

Relevance (mRMR) method select a feature subset set that 

best characterizes the statistical property of a target 

classification variable, subject to the constraint that these 

features are mutually as dissimilar to each other as possible, 

but marginally as similar to the classification variable as 

possible. Both of these two methods have been assessed to 

select features from functional profiles of a metagenomic 

sample. 

2) Classification method: For testing in permutations and 

determining the final list of biomarker genes, we have 

assessed both SVM, a model-driven method, and KNN, a 

data-driven method. Support vector machine (SVM) takes a 

set of input data and predicts, and predict for each given 

input, which of two possible classes comprises the input, 

making the SVM a non-probabilistic binary linear classifier. 

KNN-based classification is a simple algorithm that stores all 

available cases and classifies new cases based on a similarity 

measure (e.g., distance functions). A case is classified by a 

majority vote of its neighbors, with the case being assigned to 

the class most amongst its K nearest neighbors measured by a 

similarity measure function. 
Based on these feature selection and classification 

methods, we have proposed 4 different combinations for the 
framework: ReliefF-KNN, ReliefF-SVM, mRMR-KNN and 
mRMR-SVM. 

B. The parameter configurations for the framework 

Several parameters would significantly affect the accuracy 
of biomarker discovery. These parameters would include: (1) 
the K value for ReliefF in feature selection and classification 
process, (2) the number of cross-validation for the 
permutation testing, (3) the number of samples, (4) the 
number of features to be selected, etc. To tune for the best 
combination of configurations, we have extensively tested 
each and the combined effects. 

III. RESULTS AND DISCUSSIONS 

A. Datasets and experiment configurations 

Most metagenomic datasets obey a long-tail distribution; 

however, things are not always like this. Our empirical study 

shows that there really exit datasets subject to Gaussian 

normal distribution (for details, see our online materials at: 

http://computationalbioenergy.org/meta-biomarker.html).For 

simplify, we generated our simulated dataset based on 

Gaussian normal distribution. 
Simulated dataset 1, including two collections of datasets, 

generated as follows: for collection A, first generated 10 
positive and 10 negative samples, each has 10,000 features, 
which is normally distributed, then set 50, 500 and 1,000 of 
them as biomarkers (by normal distribution but with different 
mean and standard deviation), generating 100 datasets for 
each configuration; datasets in collection B were defined in 
the same way as collection A but with 50 positive and 50 
negative samples. The binary version of Simulated dataset 1 
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was generated by setting a threshold, data above which set as 
1, vice versa, set as 0, named Simulated dataset 2. 

To comparison with Metastats, we built two collections 
of artificial datasets, Simulated dataset 3. All collections have 
1,000 features and 100 samples distributed evenly to two 
classes, and the values were sampled from Gaussian normal 
distribution. Of the 1,000 features, 500 features have different 
means across classes and thus should be detected as 
biomarkers (discriminative features); the other 500 features 
are evenly distributed across classes and should not be 
detected as biomarkers. The method were evaluated assessing 
the numbers of error (number of features erroneously detected 
as biomarker). The two collections differ in the mean of the 
normal distribution (with an upturn in the mean difference): 
(A) The discriminative features all have μ = 100 + 2 (σ = 5), 
and others features all have μ = 100 (σ = 5). (B) 
Discriminative features in this dataset all have μ = 100 + 4 (σ 
= 5), and others are defined in the same way as dataset (A).  

The real datasets include a human saliva whole genome 
sequencing dataset[11] and T-bet

-/- 
× Rag

-/-
 and Rag

-/-
 mouse 

data[12]. Human saliva dataset includes four saliva samples 
(two from the healthy population and the other two from the 
caries-active population). For each of them, shotgun pair-end 
libraries of total saliva genomic DNA was prepared. Each 
metagenomic DNA libraries was then sequenced on one lane 
of pair-end 100bp or 75bp flow-cell on Solexa GA-IIx 
(Illumina, USA). Reads produced were processed via their 
respective computational pipelines customized for human oral 
microbiome analysis[13]. All sequences were deposited under 
accession number SRA049721. T-bet

-/- 
× Rag

-/-
 and Rag

-/-
 

mouse dataset, from the study about mouse model of 
ulcerative colitis, includes 20 T-bet

-/-
 × Rag

-/-
 (case) samples 

and 10 Rag
-/-

 (control) mice samples, and the experiment has 
been described in[12].  

The overall experiment configurations includes: first test 
the parameters used for the framework, then select features, 
and finally perform classification to choose the best set of 
features. We have first used the simulated data to analyze each 
of these steps, and the parameters used in these steps. 

The results evaluation includes: the performance of a 
model is predicted by cross-validation and evaluated by its 
sensitivity value and error-ration value.  

B. Analysis of the parameters used in the framework 

1) Analysis of K value in ReliefF for feature selection: 

We have first tested the K values in ReliefF for feature 

selection (within the combination of ReliefF-KNN), based on 

both Simulated dataset 1(continuous data) and Simulated 

dataset 2 (binary data). It can be observed that on both 

continuous and binary data, the different K values in ReliefF 

for feature selection has similar effect on the error rate and 

sensitivity of the final results. Additionally, K = 10 is a 

relatively good value for ReliefF feature selection, especially 

on binary data. 

2) Analysis of K value in KNN for classification: We 

have then tested the K values in KNN for classification (with 

in the combination of mRMR-KNN), based on both Simulated 

dataset 1 and Simulated dataset 2. On Simulated dataset 1, the 

different K values in KNN for feature selection have similar 

effect on the error rate and sensitivity of the final results. 

While on Simulated dataset 2, some more significant 

differences in results could be observed, and the best error rate 

and sensitivity could be achieved at K = 1, yet results based 

on K = 5 is also reasonably good. 

3) Analysis of the number of cross-validation: We have 

also tested the number of cross-validation (with the 

combination of mRMR-SVM), based on Simulated dataset 2. 

Results on different number of cross-validation have shown 

that the different numbers have similar effects on the error 

rate and sensitivity of the final results. 
Based on the above parameter testing results, we have 

fixed the parameters for the following tests as below in Table 
1.  

TABLE I.  THE DEFAULT PARAMETERS USED IN OUR FRAMEWORK 

Methods 

combination 
K 

 (feature selection) 

K 

(classification) 

# of cross-

validation 

ReliefF-KNN 
10 5 5 

ReliefF-SVM 10 - 5 

mRMR-KNN - 5 5 

mRMR-SVM - - 5 

C. Analysis of feature selection and classification 

In this analysis, the feature selection method includes 
mRMR and ReliefF. The number of selected candidate 
features was: 1, 5, 10, 20, and 50. For the classification, the 
discrimination power of these candidate features was 
evaluated and would be further filtered. The classification 
method includes SVM and KNN. 

 
(a) Mean value of error rates and sensitivity for Simulated dataset 1 

containing 50 candidate biomarkers 
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(b) Mean value of error rates and sensitivity for Simulated dataset 1 

containing 500 candidate biomarkers 

 
(c) Mean value of error rates and sensitivity for Simulated dataset 1 

containing 1000 candidate biomarkers 

 
Figure 2. Comparison of different combination of methods on different 

set of Simulated dataset 1. 

 

Figure 3. Mean sensitivity value and mean error rate of mRMR-SVM 
combination on oral microbial community dataset. 

We have applied the 4 different combinations of methods 
(4 models) on Simulated dataset 1, and calculated sensitivity 
value and error rate. The mean sensitivity value and mean 
error rate value for continuous data set are showed in Fig. 2. 

As shown in Fig. 2, for continuous data, ReliefF-KNN 
works well on small sample size, however, ReliefF-SVM and 
mRMR-SVM both work much better on larger sample size. It 
is also observed that for binary data (for more detail: 
http://computationalbioenergy.org/meta-biomarker.html/), 
mRMR-SVM works best both on small and large sample size. 
As such, these results suggested that the mRMR-SVM 
combination of method perform best on most of these 
simulated data. 

D. Results on real metagenomic datasets 

1) Features selected on oral microbial community 

dataset: There exists missing values in the oral microbial 

community dataset, so all data are treated as binary data by 

converting these data as follow: where there is a gene present 

(value>0), we set it as 1; otherwise, we set it as 0. 
According to the result of 4 different combination methods 

on binary data, we used mRMR-SVM method to select the 
biomarkers. The cross validation process is 5. Model runs 100 
times on these data. The candidate features set with highest 
sensitivity value and lowers error rate were selected as the 
final list of biomarkers.  

Fig. 3 shows the mean sensitivity value and error rate for 
the biomarkers discovered from oral dataset. With the 
increasing number of candidate feature, the mean value of 
sensitivity increased and mean error rate decreased. It is also 
observed that these values changed in a plausible range, which 
also indicated the powerful of the mRMR-SVM method.  

We selected 50 features as candidate biomarkers, and it is 
interesting to see that some selected genes are actually the 
caries biomarkers validated by wet-lab experiments[14]. For 
example, Alpha-glucosidase (fig_4440943.3.peg.5041) is 
thought to participate in the induction of dental caries[14]. 
Diaminopimelate epimerase (fig_4440824.3.peg.204352) is 
central to the biosynthesis of both lysine and cell-wall 
peptidoglycan in many bacteria species[14]. 

2) Features selected on T-bet
-/-

 × Rag
-/-

 and Rag
-/-

 mouse 
dataset: We applied mRMR-SVM combination on this 
dataset, and Fig. 4 shows the mean sensitivity value and error 
rate for the biomarkers discovered from this dataset. 

We selected top 20 differentially abundant taxonomic 
clades base on the result of mRMR-SVM combination. The 
manually evaluated 15 of the 20 differentially abundant 
taxonomic clades is shown in TABLE 2. 

TABLE 2 shows that, these differentially abundant 
clades detected by our method are consonant with prior 16S 
rRNA-based sequence analysis [12]. The marked loss in 
Bifidobacteriales and Bifidobacteriaceae are detected, the 
difference of which between the two classes, may explain the 
responsiveness of this colitis to a Bifidobacteriaceae animalis 
subsp. Lactis milk product. Our method also detected the 
Lachnospiraceae, Bifidobacteriaceae, and  Staphylococcaceae 
enrichment difference between the two classes, which is in 
good agreement with the experiment results from [15]. Our 
method also highlights several clades within the Clostridia, 
including Papillibacter, Roseburia,
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TABLE II.  DIFFERENTIALLY ABUNDANT TAXA BETWEEN T-BET
-/-

 × RAG
-/-

 (CASE) AND RAG
-/- (CONTROL) MICE 

Bacteria|Firmicutes|Clostridia|Clostridiales|Ruminococcaceae|Papillibacter 

Bacteria|Bacteroidetes|Bacteroidia|Bacteroidales|Bacteroidaceae 

Bacteria|Firmicutes|Clostridia|Clostridiales|Lachnospiraceae|Coprococcus 

Bacteria|Actinobacteria|Actinobacteria|Coriobacteriales|Coriobacteriaceae|Collinsella 

Bacteria|Actinobacteria|Actinobacteria|Bifidobacteriales|Bifidobacteriaceae|Metascardovia 

Bacteria|Firmicutes|Clostridia|Clostridiales|Lachnospiraceae|Roseburia 

Bacteria|Actinobacteria|Actinobacteria|Coriobacteriales|Coriobacteriaceae|Asaccharobacter 

Bacteria|Firmicutes|Bacilli|Bacillales|Staphylococcaceae 

Bacteria|Actinobacteria|Actinobacteria|Coriobacteriales|Coriobacteriaceae|Eggerthella 

Bacteria|Firmicutes|Clostridia|Clostridiales|Lachnospiraceae 

Bacteria|Firmicutes|Bacilli|Bacillales|Staphylococcaceae|Staphylococcus 

Bacteria|Proteobacteria|Deltaproteobacteria|Desulfovibrionales|Desulfovibrionaceae|Lawsonia 

Bacteria|Actinobacteria|Actinobacteria|Bifidobacteriales|Bifidobacteriaceae 

Bacteria|Actinobacteria|Actinobacteria|Coriobacteriales|Coriobacteriaceae 

Bacteria|Firmicutes|Clostridia|Clostridiales|Ruminococcaceae|Oscillibacter 

Oscillibacter and Coprococcus genera, which play an 
important role in the development of ulcerative colitis. 
Intestines of mice with colitis caused by dextran sulfate 
sodium (DSS) contain more Bacteroidaceae cells than 
untreated controls[16], which has also been indicated in our 
result. 

 

Figure 4. Mean sensitivity value and mean error rate of mRMR-SVM 
combination on T-bet-/- × Rag-/- and Rag-/- mouse dataset. 

E. Comparison with other metagenomic biomarker 

discovery methods 

We applied Metastats (q-value, B = 1,000, alpha = 0.05) 

and our mRMR-SVM combination to Simulated dataset 3, 

which includes two collections of dataset: collection A, 

collection B, all generated from normal distribution with same 

variance but mean. Results obtained by the two methods with 

these collections were ranked respectively: Metastats results 

ranked by their q-values and Meta-Biomark results ranked by 

feature weighting. Then top n (n = 5, 10, 15, 20) features were 

selected as biomarkers. The number of errors (number of 

features false selected as biomarkers) and error rate of these 

selected features with Simulated dataset 3 were listed in 

TABLE 3. Our framework can obtain biomarkers indicating 

the difference between the two classes with collection A, for 

example, the number of errors was 1 when 10 features were 

selected as biomarkers; however, Metastats selected no 

biomarkers, and indicated by NULL in TABLE 2. The power 

of Metastats is increased along with the increase of mean 

value difference between the classes, indicated by results with 

collection B. Comparison of these two methods shows that 

our method can obtain representative features even small 

differences existing between two classes, however, Metastats 

do not. 

TABLE III.  THE COMPARISON OF OUR FRAMEWORK AND METASTATS 

 Collection A Collection B 

# of Biomarkers Metastats Ours Metastats Ours 

5 NULL 0 0 0 

10 NULL 0 0 0 

15 NULL 1(6.7%) 0 0 

20 NULL 2(10%) 0 0 

 

F. Application and other considerations 

The most desirable set of biomarkers would have at least 
three properties: their identification does not need any 
sequencing, there are a few of them, and they have functional 
and/or taxonomical annotations. These properties of 
biomarkers are needed because of application considerations. 
In such context, a set of genes that would be very simple and 
cheap to reproduce, such as by PCR or RT-PCR, would be 
good biomarkers for metagenomic samples. For example, 
based on a set of determined genes as biomarkers, it is 
possible for a dentist to identify a few genes’ presence to tell 
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if the corresponding host is carries or not, with certain error 
rate estimates[14].  

IV. CONCLUSION 

 Determination of biomarkers for metagenomic samples is 
important for quickly differentiating and categorizing of 
microbial communities. However, current metagenomic 
biomarker identification methods relied on metagenomic 
sequencing. Thus, it is not possible to tell functional 
differences between samples in a quick and cheap manner, 
and make applications such as clinical diagnosis difficult. 

The most desirable set of biomarkers would have at least 
three properties: their identification does not need any 
sequencing, their number is small, and they have functional 
annotations. In this study, we have focused on machine 
learning methods, and evaluated different feature selection 
and classification method to select functional biomarkers from 
metagenomic samples.  

In this paper, we proposed a framework to select 
discriminative features from functional profile of the 
metagenomic sample. Firstly, the features (genes) that 
selected are both biologically meaningful and clinically easy 
to use. Secondly, the number of biomarkers that selected is 
few and controllable (by specifying the number), and these 
small number of biomarkers are easy to be used in 
applications than the use of taxonomical or functional 
structures as biomarkers[17]. Thirdly, as it is based on 
supervised machine learning, thus potentially could achieve 
higher accurate than traditional method such as t-test, with the 
accumulation of real datasets in real-world applications. 
Finally, our framework is not restricted by WGS’s real gene 
expression values, but could also adapt to the Geochip’s 
binary gene presence values. Therefore, this framework is a 
suitable method to select biologically meaningful biomarkers 
(genes) for the metagenomic samples. 

It is shown from our experiments that this framework is 
able to detect a set of biomarkers with high sensitivity and low 
error rate. With the development of microarray-based and 
WGS-based metagenomic data sampling techniques, 
metagenomic samples are acuminating rapidly. Therefore, this 
method could uncover a lot more functional biomarkers for a 
large range of metagenomic samples. And a database of these 
functional biomarkers would eventually facilitate the on-going 
barcoding projects for all selected microbial communities.  

Our future research direction would include: analyzing the 
effect of classification method on final result; generalizing our 
method can applied to dataset including more than two groups; 
more general  gene-based  features  to  be  extracted  based  on  
more accurate  methods. We believe these would not only 
improve the accuracy of functional biomarker discovery, but 
also would extend the usability of our method. 
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