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Abstract—Mathematical models have been used to understand
the factors that govern infectious disease progression in viral
infections. Many hepatitis B virus (HBV) models were set up
based on the basic virus infection model (BVIM) introduced by
Zeuzem et al. and Nowak et al. But some references have pointed
out that the basic infection reproductive number of the BVIM is
biologically questionable and given the modified models. And so
far, no immune model with alanine aminotransferase (ALT) was
given based on the modified models. In this paper one immune
models with ALT based on the modified model is discussed. The
stability analysis and simulation of the model is also given based
on clinical data of ALT and HBV DNA.
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I. INTRODUCTION

Chronic hepatitis B caused by the HBV remains a major
global health problem. About 2 billion people have been
infected with the virus [1], with 5 million new cases each year
[2]. The annual mortality from hepatitis B infection and its
sequelae is 1-2 million people worldwide [3]. HBV infection
acquired in adult life is often not clinically apparent and most
acutely infected adults recover completely from it. Roughly
5%-10% of acutely infected adults become persistently in-
fected by the virus and develop chronic hepatitis [4].

It is currently widely accepted that HBV infection is non-
cytopathic. Infected hepatocyte are killed not by the virus but
by HBV-specific cytotoxic T lymphocytes (CTLs)[5]. Studies
in human and animal models provide substantial evidence
that viral hepatitis is initiated by an antigen specific antiviral
cellular immune response [4].

Most patients with chronic HBV infection require long-term
therapy [6], [7]. Effective treatment of chronic HBV patients
aims to prevent progression of chronic hepatitis B (CHB) to
cirrhosis, hepatocellular carcinoma, and eventually death.

The most commonly used drugs include interferon alpha,
peginterferon alfa-2a, and nucleotide such as lamivudine, ade-
fovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil
fumarate(DF)[8]. The nucleotide analogues can inhibit viral
reverse transcriptase of viral DNA synthesis, while inter-
feron is an immune system modulator. Interferons are not
recommended for use in patients with decompensation or
immunosuppression, they may have treatment limiting side
effects, and they require parenteral administration. Oral nu-
cleosides, although potent, have been limited by the devel-
opment of resistance mutations in the HBV polymerase re-

verse transcriptase[9], [10]. Until drug resistance is overcome
or more effective and inexpensive therapies are introduced,
hepatitis B will remain a major threat to health around the
world.

Alanine transaminase (ALT) are chemicals that liver release
when they are damaged or sick . ALT in serum is one of the
main indicators for inflammatory activity in chronic hepatitis
B. Doctors will generally treat patients if their ALT levels are
elevated twice above normal. Elevated ALT levels also mean
the host’s immune system is actively fighting the hepatitis
B infection. Paper[9] pointed that during interferon-based
therapy, approximately 25%-40% of patients exhibit an ALT
flare, which is probably caused by the immune stimulatory
effects of interferon. While there is no increased incidence
of ALT flares during treatment with nucleos(t)ide analogues,
but flares occur in 10%-20% of patients after withdrawal of
treatment[12]. Paper [13] reported that host-induced flares,
i.e. an ALT flare followed by a decrease in HBV-DNA, are
associated with a favorable treatment response.

The use of mathematical models to enhance our understand-
ing of the dynamics of chronic viral infections has proven
fruitful. The use of mathematical models to interpret experi-
mental and clinical results has made a significant contribution
to the fields of (anti-) HIV, HBV and /or HCV infections[14],
[15], [16], [17], [18]. Among those models, the basic virus
infection model (BVIM) introduced by Pelson et al.[15] and
Nowak et al. [17] is widely used in the studies of virus
infection dynamics.

The BVDM was described as follows: .
⎧
⎨
⎩

ẋ = λ − dx − βvx
ẏ = βvx − ay
ż = ky − μv

(1)

where x, y and v are numbers of uninfected (susceptible) cells,
infected cells, and free virus respectively. Uninfected cells are
assumed to be produced at the constant rate λ and to die at
the rate of dx, and become infected at the rate of βvx , where
β is a rate constant describing the infection process. Infected
cells are thus produced at the rate of βvx and are assumed
to die at the rate ay. Free virus are assumed to be produced
from infected cells at the rate of ky and are removed at the
rate of μv.

Many subsequent models have adapted the structure of (1)
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to include immune system dynamics [19], [20], [21], [22]
and various treatments [23]. The basic infection reproductive
number of model (1) is R0 = λβk/adu, Paper [24] pointed
that the basic infection reproductive number may not be
reasonable, for it is proportional to λ/d which represents
the number of total cells of the liver, which implies that an
individual with a smaller liver maybe more resistant to virus
infection than an individual with a larger one.

Paper [24] pointed that the of model (1) is biologically
questionable and gave an modified model by using a standard
incidence function, and the reproductive number of the mod-
ified model is R0 = βk/au which seems more reasonable.
Based on paper [24], several models have been considered to
describe different aspects of HBV dynamics[25], [26], [27].

In this paper, based on paper [24], we will discuss an
immune model with ALT. The model was described as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = λ − dx − βxv

x + y

ẏ =
βxv

x + y
− dy − k1yz

x + y
v̇ = ky − μv
ż = (g + k2yz)(1 − z/zmax) − d1z
u̇ = s + k3z(1 − z/zmax) − d2u
x(0) > 0, y(0) ≥ 0, v(0) ≥ 0, z(0) ≥ 0, u(0) ≥ 0

(2)

where the meaning of the variables x, y, v and the parameters
λ, d, β, k, μ are the same as those of BVIM, and we suppose
the die rate of infected cell is the same as uninfected cells. z
is the number of CTL, u represents the levels of ALT. ALT
are assumed to be produced at the constant rate s(s > 0).
The constant d1, d2(d1, d2 > 0) are the death rates of CLT
and ALT. The infected cells are killed by the CLT response
at a rate k1yz/(x+ y). CLT proliferation can be described by
two terms g and k2yz, where g represents antigen-independent
proliferation, and k2yz represents antigen-dependent prolifera-
tion. k3 represents the elevating rate due to the host’s immune
system’s activity. The basic infection reproductive number of
model (2) is R0 = βk/dμ. The system (2) has a disease-free
equilibrium point Q1 = (λ/d, 0, 0, z∗, u∗) , which

z∗ = g/(d1 + g/zmax), u∗ = [s + k3z
∗(1 − z∗/zmax)]/d2.

If R0 > 1, system (2) has a unique infection equilibrium
point Q2 = (x2, y2, v2, z2, u2), which

y2 =
d1z2 − g(1 − z2/zmax)

k2z2(1 − z2/zmax)
,

v2 = ky2/μ,

u2 = s/d2 + k3/d2 · z2(1 − z2/zmax).

and x2, y2, z2 satisfy :

dx2
2 + (2dy2 − λ)x2 + (dy2 − λ)y2 + k1y2z2 = 0.

II. ANALYSIS OF MODEL (2)
Theorem 2.1: Under the given initial conditions, all solu-

tions of system (2) are positive and there exists an M > 0
such that each solution satisfies x(t) < M, y(t) < M, z(t) <
M, u(t) < M, v(t) < M after enough large time t.

Proof: First, from [5] , it can be easily seen that the
solution of (2) with the given initial condition exists, and is
unique. Furthermore, it can also be shown that the solution of
(2) is also nonnegative for all t > 0.

Now, we prove the boundedness of the solution of (2).
Let N1(t) = x(t) + y(t), we have

Ṅ1 = λ − dx − dy − k1yz/(x + y)

≤ λ − d(x + y)

= λ − dN1.

A simple comparison argument shows that

lim sup
t→∞

(x(t) + y(t)) ≤ λ/d.

Thus, x(t), y(t) are ultimately bounded by M1 = λ/d.
From v̇ = ky − μv ≤ kM1 − μv, just as above proof, v(t)

is also ultimately bounded by M2 = kM1/μ .
Let N2(t) = 2M1y(t)+k1/k2 ·z(t). Note that x+y ≤ 2M1

for large t, we have

Ṅ2 = 2M1(
βvx

x + y
− dy − k1yz

x + y
)

+
k1

k2
· [(g + k2yz)(1 − z/zmax) − d1z]

≤ 2M1βv − 2M1dy − k1yz +
k1

k2
g + k1yz − k1

k2
d1z

≤ (2M1βM2 +
k1

k2
· g) − min(d, d1)(2M1y +

k1

k2
z)

= (2M1βM2 +
k1

k2
g) − min(d, d1)N2

Then N2 is also ultimately bounded by (2M1βM2 + k1/k2 ·
g)/ min(d, d1), So z(t) is also ultimately bounded by some
positive M3.

Obviously u̇ ≤ s + k3M3 − d2u. Let p = s + k3M3, the
above inequality turns to du/dt ≤ p−d2u. Similar to the above
proof, we can know that u(t) is also ultimately bounded by
some positive M4. Now let M = max{M1, M2, M3, M4}, we
have x(t) < M, y(t) < M, v(t) < M, z(t) < M, u(t) < M.

Let D = {(x, y, v, z, u)|0 < x ≤ λ

d
, 0 ≤ y, v, z, u ≤ M},

it is easily to know that D is positive invariant set of system
(2).

Theorem 2.2: If R0 < 1 , the infection-free equilibrium Q1

of system (2) is local asymptotically stable.
Proof: The Jacobi matrix of Q1 is as follows:

J |Q1=

⎛
⎜⎜⎜⎜⎝

−d 0 −β 0 0
0 −d β 0 0
0 k −μ 0 0
0 J42 0 −d1 − g/zmax 0
0 0 0 k3 − 2k3z/zmax −d2

⎞
⎟⎟⎟⎟⎠

which J42 = k2d1gzmax2/(zmaxd1 + g)2. The eigenvalues of
J |Q1 are:

λ1 = −d, λ2 = −d1 − g/zmax, λ5 = −d2,

λ3,4 =
−(d + μ) ±

√
(d + μ)2 − 4(dμ − βk)

2

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

98 Xi’an, China, August 18–20, 2012



It is easy to know λ1, λ2, λ5 are less than 0. From R0 < 1,
that is dμ−βk > 0, the real part of λ3,4 is negative. Therefore,
Q1 is locally asymptotically stable.

Theorem 2.3: If R0 < 1, the infection-free equilibrium Q1

of system (2) is globally asymptotically stable in D.
Proof: Let

V1(t) = y(t) +
d

k
v(t).

Calculating the derivative of V1 along the solutions of the
model (2) gives

V̇1(t) =
βxv

x + y
− dy − k1yz

x + y
+

d

k
(ky − μv)

=
βxv

x + y
− k1yz

x + y
− dμ

k
v

� βxv

x + y
− dμ

k
v

=
dμ

k
(R0 − 1)v.

Since R0 < 1, we have V̇1(t) � 0.
Let E = {(x, y, v, z, u)}|V̇1(t) = 0, obviously

E ⊂ {(x, y, v, z, u)|v(t) = 0}

. Let M be the largest set which is invariant with respect to
(2), by the third equation we can know that y(t) = 0, so
M = {(x, y, v, z, u)|y = 0, v = 0}. By LaSalle invariance
principal, we know

lim
t→∞

y(t) = 0, lim
t→∞

z(t) = 0,

The limit equation of system (2) is
⎧
⎨
⎩

ẋ = λ − dx
ż = g(1 − z/zmax) − d1z = g − (g/zmax + d1)z
u̇ = s + k3z(1 − z/zmax) − d2u

(3)

From the equation of (3), we easily know

lim
t→∞

x(t) =
λ

d
.

lim
t→∞

z(t) =
g

d1 + g/zmax
.

and

lim
t→∞

u(t) =
s + k3z

∗(1 − z∗/zmax)

d2
.

Therefore,

(
λ

d
,

g

d1 + g/zmax
,
s + k3z

∗(1 − z∗/zmax)

d2
)

is globally asymptotically stable for model (3). So Q1 is
globally attractive, by the local asymptotical stability of Q1,
we can know Q1 of system (2) is globally asymptotically
stable if R0 < 1.

III. APPLICATION

Based on model (2), note that adefovir can inhibit viral
reverse transcriptase of viral DNA synthesis, we set out the
following therapy model with drug adefovir:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = λ − dx − βxv

x + y

ẏ =
βxv

x + y
− dy − k1yz

x + y
v̇ = (k − p)y − μv
ż = (g + k2yz)(1 − z/zmax) − d1z
u̇ = s + k3z(1 − z/zmax) − d2u

(4)

which p(p > 0) represents the efficacy of therapy.
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Fig. 1. The simulation of HBV DNA.
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Fig. 2. The simulation of ALT.

we will use our model (4) to simulate the treatment data
of HBV infection with drug adefovir reported by [28]. We’ll
estimate the parameters of system (2) as follows:

1) If the virus is cleared, the infection-free equilibrium Q1 =
(λ/d, 0, 0, z∗, u∗) is stable. Thus, we can assume λ/d
represents the number of liver cells.

2) A normal human liver contains ≈ 2×1011 hepatocytes.[29]
A normal patient has about total 3000 ml plasma. Usually,
tested virus qualities are in copies/ml. Consequently, we
can assume that

λ/d ≈ 2 × 1011/3000.
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3) Since the half-life of a hepatocyte is about half a year,[30]
we can assume that

d = − ln(0.5)/100 ≈ 0.00693.

4) We assume that μ = 0.58 , that is equivalent to assume
that the half life of a virus is about one day [15]

5) We assume that d2 = 0.3466 , that is equivalent the half
life of ALT virus is about two days, note that the normal
level of ALT is about 40U/L, so we can choose s = 14.

6) Based on the clinical data and numerical simulation, we
can select the other parameters as follows.

{β, k, k1, p, zmax} = {1.39, 3.0, 4.8, 2.997, 1.0e + 9}.

{g, k2, d1, k3} = {0.01, 6.0e − 10, 0.6, 45.9}.

The simulation was shown in figure 1 and figure 2. In the two
figures, the solid line is the simulation of treatment model
based on (4). ◦ stands for clinical data of HBV DNA in figure
1 and ALT in figure 2. From Figure 1 and figure 2 we can
see that the simulation of our therapy model is in agreement
with the clinical data.

IV. CONCLUSION

This paper introduces an immune model with HBV about
ALT response to HBV. The detailed analysis on the local
asymptotic stability and global asymptotic stability of disease-
free equilibrium Q1 is carried out. It is shown that if R0 =
βk/dμ < 1, the equilibrium Q1 is locally and globally
asymptotically stable. Base on the immune model with HBV,
this paper also set up a therapy model. The simulation of the
therapy model shows that our model can fit the clinical data
well, of course more data are needed to improve our model.
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