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Abstract—Protein phosphorylation is involved in most cellular
functions. Because of the importance of protein phosphorylation,
many methods are conducted to identify the phosphorylation
sites. Experimental methods for identifying phosphorylation sites
are not only costly but also time consuming. Hence, computa-
tional methods are highly desired. In this paper, three new encod-
ing methods, BinCTF(Binary-conjoint triad feature), CTF2(new
conjoint triad feature) and BinCTF2(Binary-new conjoint triad
feature), which are the modification of Binary and CTF encoding,
are developed. Then an ensemble support vector machine is
applied to predict the phosphorylation sites related to serine (S),
threonine (T) and tyrosine (Y) residues. The numerical results
indicate that some of the performance of these new methods are
better than previous methods.

Key words: support vector machine; encoding scheme; protein
phosphorylation; prediction

I. INTRODUCTION

The post-translational modification (PTM) of proteins is a
common biological mechanism for regulating protein func-
tions. It makes protein complicate in structure, complete
in function, and precise in regulation. Almost all kinds of
proteins need some sort of translational modification during
its synthetical process or after it. This paper concerns kinase-
specific phosphorylation sites prediction. Kinase-specific phos-
phorylation is the central mechanism of post-translational
modification to regulate cellular responses and phenotypes.
Signaling defects associated with protein phosphorylation are
linked to many diseases, particularly cancers. Characterizing
protein kinases and their substrates will enhance our ability
of understanding and treating such diseases and broaden our
knowledge of signaling networks. So, the ability to predict
potential phosphorylation sites has considerable value. Some
experimental technologies have been applied to the identifica-
tion of phosphorylation sites, but these methods have common
problems which are time consuming and expensive. Therefore,
the computational method is highly desired because of its
remarkable merits, quick and convenience.

Some of the currently available computational methods
are based on sequence information and machine learning
techniques. And the encoding schemes based on sequence
information have been successfully applied in the prediction of
PTM sites. The currently existed encoding schemes considers
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both the specific and the characters of amino acids. Kim
et al. [1] used the standard binary encoding scheme, which
considered only the specific amino acid, to predict phospho-
rylation sites and obtained better outcome than all previous
methods. There are also encoding schemes that considered the
chemical and physical information of amino acids including
the reduce alphabet encoding schemes[2], blosum62 encoding
[3], SARAH1 hydrophobicity scale encoding [4] and the
Conjoint triad feature (CTF) [5] etc. Another kind of encoding
schemes considered the distribution of amino acid pairs, such
as the coupling patterns encoding scheme (couple pattern
recognition, CPR) [3], position weight matrix (PWM) encod-
ing scheme [16] and the position weight matrices (PWMs)
encoding scheme [8]. In this paper, we propose three new
encoding schemes which consider the specific amino acid and
the chemical characters of amino acids.

After the input vectors are constructed by encoding scheme,
another important issue is choosing the classification method.
Support vector machine(SVM) has been widely used in the
fields of bioinformatics and it also has a good performance in
the prediction of PTM sites. In this paper, we use an ensemble
of SVM [8], [11] classifiers for classification because of the
imbalanced data.

The rest of this paper is organized as follow. In section 2,
we introduce the proposed encoding schemes and SVM. The
experimental design and results are reported in section 3. In
the last section, we conclude this paper.

II. METHODS

The ability to precisely predict phosphorylation sites de-
pends strongly on the encoding scheme. We come up with
three new encoding scheme based on two pervious encoding
schemes to seek for better prediction accuracy.

A. Encoding schemes

Binary-conjoint triad feature (BinCTF) First, we briefly
introduce Binary and CTF encoding schemes. Binary encoding
is proposed by Kim et al. [1]. According to this scheme, each
amino acid is mapped to a 21-dimensional vector. The twenty
standard amino acids are ordered one to twenty, and the i-th
amino acid has the binary codeword of twenty bits with the
i-th bit set to 1 and all others to 0, for i = 1, 2, · · · , 20. In
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order to ensure the identical of window size of the sequence,
an extra amino acid is added and we call it “the dummy
amino acid”. It is set to 0 for the first twenty units and 1
for last unit. A sequence fragment of length 2n+1 is encoded
in 21 ∗ (2n + 1) bits with the binary codewords of amino
acids concatenated based on their order in the fragment. The
traditional CTF encoding method is firstly proposed for the
prediction of protein-protein interaction by Shen et al. [5] in
2007. According to the dipoles and volumes of the side chains,
20 amino acids were classified into seven classes: {A, G, V
}, {I, L, F, P}, {Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E},
{C}. The conjoint triad considered the properties of one amino
acid and its vicinal amino acids, the conjoint triad regarded any
three continuous amino acids belonging to the same classes,
such as ‘ART’ and ‘VKS’, could be treated identically. For
the amino acids, there are 7 ∗ 7 ∗ 7 = 343 different types of
conjoint triad. Then a binary space (V, F ) is used to represent
a protein sequence fragment. Here V is the vector space of
the sequence features, and each feature vi, i = 1, 2, · · · , 343
represents a sort of triad type; F is the frequency vector
corresponding to V , and the value of the i-th dimension of
F, fi, i = 1, 2, · · · , 343, is the frequency of type vi appearing
in the protein sequence. Clearly, each sequence fragment has a
corresponding F vector. [10] predicted phosphorylation sites
by using CTF and Binary encoding scheme, the results are
shown in I.

TABLE I
THE AUC OF CTF ENCODING SCHEME (WINDOW SIZE=13)

CDK CDK1 CDK2 CK2 MAPK3 GRK PKA PKC SRC
CTF 0.795 0.795 0.735 0.864 0.774 0.792 0.884 0.849 0.576

Binary 0.939 0.962 0.748 0.903 0.938 0.884 0.934 0.878 0.730

From Table I, we can see that CTF encoding scheme is
not good enough for predicting phosphorylation sites. It has
a lower mean of AUC. The highest AUC is just 0.884 (for
predicting PKA) and the lowest is 0.576 (for predicting SRC).
Since, CTF encoding scheme has a very good performance in
many other protein prediction issue [5], there must be some
reasons for its bad performance on predicting phosphorylation
sites. The reason might be that the CTF encoding scheme
doesn’t distinguish the amino acids within the same group,
that is, overlooking the difference between those amino acids
in the same class. While most of the phosphorylation sites
closely relate to not only the physical and chemical property
of the amino acids but also the specific amino acid. Based on
the above consideration, we propose a new encoding scheme
called BinCTF which combines the CTF encoding scheme and
Binary encoding scheme. The BinCTF considers both specific
amino acid and the chemical and physical character of the
amino acid. We hope the BinCTF could perform better than
Binary and CTF. This encoding scheme translates an amino
acid sequence fragment into a vector by both Binary encoding
scheme and CTF encoding scheme. And then, combine the one
with the other as its encoding vector, which means concatenate
the two vector together and make it into a longer vector. Since
Binary encoding gives each amino acid a 21 dimensional

vector and CTF encoding make the sequence into a 343
dimensional vector, the output vector by this method should
be a 21 ∗ n + 343 dimensional vector, where n is the length
of the sequence.

New conjoint triad feature (CTF2) The dummy amino
acid is often used to ensure the identical of the window size
of the amino acid sequence, but the CTF scheme ignores the
dummy amino acid. Just from the perspective of encoding, the
dummy amino acid should be considered when we construct
the input feature vectors. Therefore, we make the dummy
amino acid an extra class, which is noted as O. The whole
21 amino acids were classified into eight classes: {A, G, V },
{I, L, F, P}, {Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E},
{C}, {O}. Then rest of the encoding method is remain the
same as the CTF encoding. The output vector should be a 512
(8 × 8 × 8)-dimensional vector. The new scheme is named as
CTF2 in the rest of this paper.

Binary+CTF2 (BinCTF2) To consider both the specific
amino acid and the physical and chemical information, we also
combine Binary and CTF2 encoding scheme. This encoding
scheme may solve its two problems: the ignored dummy
amino acid and the difference between amino acids which are
classified in the same class. We hope that this encoding scheme
can achieve better performance on predicting phosphorylation
sites. For a sequence of length n, the output vector by this
BinCTF2 should be a 21 ∗ n + 512 dimensional vector. We
abbreviate this encoding scheme as BinCTF2 in the rest of
this paper.

Notice that, it would lead to a very high dimensional vector
by these new encoding schemes. It is well-known that feature
selection can be helpful in selecting important features of vec-
tors which will decrease the dimension of vectors significantly.
In this paper, we use t-test[7] as the feature selection method
to optimize our three encoding scheme. For the BinCTF, CTF2
and BinCTF2 encoding schemes, we select 80 features of the
translated vector as their encoding vector. So, we can get three
new different encoding scheme, they are named as t-BinCTF,
t-CTF2, t-BinCTF2, separately.

Next, we briefly introduce the classification methods used
in this paper.

Support vector machine(SVM)[17]
Given the training set:

T = {(x1, y1), · · · , (xl, yl)} ∈ (X × Y)l, (1)

where xi = ([xi]1, [xi]2, · · · , [xi]n) ∈ X ⊆ Rn is the input
and its n components are called ‘features’. For the microarray
data, the n features are n gene expression levels. yi ∈ Y =
{−1, 1} is the output, it means ‘normal’ or ‘cancerous’ for
microarray data. The training set T is given by (1), the SVM
is to find a hyperplane that separates the two classes of data
points by the maximizing margin:

min
w, b, ξ

1

2
‖w‖2 + C

l∑

i=1

ξi , (2)

s.t. yi((w · xi) + b) ≥ 1 − ξi , i = 1, · · · , l , (3)
ξi ≥ 0 , i = 1, · · · , l , (4)
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where the constant C(> 0) determines the trade-off between
margin maximization and training error minimization. The
dual problem of the primal problem (2) ∼ (4) is

min
α

1

2

l∑

i=1

l∑

j=1

yiyjαiαj(xi · xj) −
l∑

i=1

αi , (5)

s.t.
l∑

i=1

yiαi = 0 , (6)

0 ≤ αi ≤ C , i = 1, · · · , l , (7)

where α = (α1, α2, · · · , αl)
T. Suppose α∗ =

(α∗
1, α

∗
2, · · · , α∗

l )
T is the solution of the dual problem

(5) ∼ (7), if there exists some j such that 0 < α∗
j < C, the

solution about (w, b) of the primal problem (2) ∼ (4) can be
calculated by the following:

w∗ =
l∑

i=1

α∗
i yixi, xj), (8)

b∗ = yi −
l∑

i=1

yiα
∗
i (xi · xj). (9)

A new point x is to be assigned with the label f(x) =
sgn((w∗ · x) + b∗).

An ensemble of SVM classifiers Because the data (see
Table II, the number of positive points sites is much less
than the number of negative points sites) is imbalanced and
we cannot guarantee that a single SVM always provides
the global optimal classification performance over all test
examples, therefore, the ensemble SVM [8], [11] is used for
classification in this paper.

An ensemble of SVM classifiers is a collection of some indi-
vidual SVM classifiers. Each individual SVM has been trained
independently from the randomly chosen training samples and
the final label of a sample is decided by vote. That is, if the
majority of the individual SVM classifiers classify the sample
into positive class, this sample will be regarded as a positive
sample.

III. NUMERICAL EXPERIMENT

A. dataset

The database of the Phospho.ELM (version 1109) [14]
has been used as a benchmark to test the performance of
many published computational models for the phosphorylation
prediction. It contains a collection of experimentally verified
serine (S), threonine (T), and tyrosine (Y) specific phospho-
rylation sites in eukaryotic proteins. The entries provide the
information about the phosphorylated proteins and the exact
positions of the known phosphorylated residues, which are
catalyzed by a given kinase.

For a given kinase, we define a local window with each
phosphorylation or non-phosphorylation site in the middle and
n sequence neighbors on each side; Then the window size
is 2n + 1. Since the window size can affect the prediction
accuracy, we need to find the most suitable size. In this paper,

the window size is set to 11, 13, 15, 17 and 19 separately to
compare with each other. It must be noted that the positive data
and negative data might contain some homologous sites from
homologous proteins. And the prediction accuracy would be
inaccurate if the testing data are highly homologous with the
training data. To avoid this fault, we remove the homologous
sequences with threshold 70%. That is, if two sequence frag-
ments have 70% identity in the corresponding positions, then
only one will be reserved while the other will be discarded.
The homology reducing process is separately carried out on
positive and negative data. The final non-homologous datasets
are summarized in Table II.

TABLE II
THE SIZE OF POSITIVE AND NEGATIVE DATASETS OF DIFFERENT WINDOW

LENGTH

Protein kinase n=11 n=13 n=15 n=17 n=19
l+/l− l+/l− l+/l− l+/l− l+/l−

CDK 94/3370 94/3402 93/3391 93/3383 93/3399
CDK1 145/8265 145/8322 145/8311 144/8297 145/8329
CDK2 67/2711 68/2726 68/2724 68/2723 68/2728
CK2 214/7233 219/7323 218/7310 218/7298 222/7335

MAPK3 86/6060 86/6143 86/6121 86/6110 86/6137
GRK 37/312 37/319 37/315 37/316 37/318
PKA 313/17765 319/18066 320/17980 317/17918 321/18075
PKC 225/9946 225/10061 225/10033 225/10020 225/10089
SRC 73/853 73/864 73/863 73/859 74/867

l+ is the number of positive samples and l− is the number of
negative samples.

B. Evaluate criterion

In order to evaluate our prediction,some criterion are nec-
essary. We use the following four measurements to evaluate
our prediction: sensitivity(Sn), specificity(Sp), accuracy(Acc),
and the area under the ROC curve(AUC). They are defined as
follow:

Sn =
TP

TP + FN
,

Sp =
TN

TN + FP
,

Acc =
TP + TN

TP + FP + TN + FN
,

where TP, TN, FP and FN denotes the number of true positives,
true negatives, false positives and false negatives, respectively.
The prediction validity is often examined by observing its
ROC curve because they are able to show the trade-off between
sensitivity and specificity and give a complete evaluation. The
area under the curve(AUC) is another important indicator, the
larger, the better.

In numerical experiment, we first select a window length
and an encoding scheme. Then, put it into an ensemble of
SVM classifiers. In this paper, we make an ensemble of 9
classifiers, and each classifiers will give its prediction. The
kernel used in each individual SVM is the Gauss kernel and
the kernel parameter σ and the penal parameter C in individual
SVM is chosen form 2−5 ∼ 25 respectively. According to
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comparing results from the numerical experiment, we record
those parameter with the largest AUC.

C. Results

For all datasets with different window size, we conduct ten-
fold cross validation 5 times and compare the average AUC
and Sn, Sp and Acc. For short of page, only parts of the results,
including the average AUC with different window size and the
ROC curves, are shown in this paper. Next, we analysis the
performance of each encoding scheme on all datasets.

From Table III and Fig.1 to Fig.9 , we can see that BinCTF
preforms better than CTF and CTF2. The best AUC of BinCTF
is the result on the ’CDK1’ data, the mean AUC of different
window size is 0.955 which is 8% higher then the best AUC
of CTF2 on ’CK2’and 12.3%higher than the best AUC of
CTF on ’CK2’. The performance of BinCTF is better than
Binary on four datasets, ’CDK’, ’MAPK3’, ’GRK’ and ’PKC’,
the lowest AUC of BinCTF is about 0.1% to 1% higher then
the AUC of Binary. On ’CDK1’, ’CDK2’, ’CK2’ and ’SRC’,
BinCTF performs worse, the AUC is about 1% lower than the
AUC of Binary. On ’PKA’, two methods perform the same.
Comparing BinCTF with BinCTF2, we find that they performs
almost the same. The difference of the average AUC between
them is no more than 0.9%. We also compare CTF with
CTF2 and we find that the CTF2 performs better than CTF on
some datasets, such as ’GRK’, ’PKA’, ’PKC’, ’SRC’ ’CDK2’.
On the other datasets, CTF2 performs worse than CTF. The
difference of average AUC between CTF and CTF2 is about
1%. From Table III, we can also find out that feature selection
has significant meaning on prediction. Every encoding scheme
becomes better when feature selection is applied. The average
AUC of t-BinCTF is about 0.03 higher than BinCTF which
means 3% improvement, and so does t-BinCTF2. t-CTF2 has
an improvement which is about 7.5% on average than CTF,
but it is still lower than t-BinCTF and t-BinCTF2. The most
remarkable improvement in the using of feature selection is
on ’SRC’. Before that, the best AUC prediction on ’SRC’ is
0.712, and when feature selection is applied, the best AUC
prediction it has is 0.897. Therefore, we conclude that feature
selection based on t-test should be widely applied in this
prediction process!

D. Comparison with other Prediction Tools

To further evaluate the performance of our methods, we
compared it with three existing tools, NetPhosK 1.0[20], GPS
2.1[21], and Musite[22]. For the sake of room, only the three
well known kinases family: PKA, CK2, and MAPK3 family
are used for comparison. We adjust the prediction thresholds to
set the specificity levels as close as possible to 99.0, 98.0, 97.0,
95.0, and 90.0% and compared the corresponding sensitivities.
Only t-BinCTF2 and t-BinCTF are used for comparison, since
they have the best performance among the methods that we
come up with in this paper. From Table IV we can find out that
t-BinCTF and BinCTF2 work better than previous methods
at some specificity(Sp) level, and have some worse results
compare to those methods either. (The best performed result
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TABLE III
THE AUC OF DIFFERENT ENCODING SCHEME

method length CDK CDK1 CDK2 CK2 MAPK3 GRK PKA PKC SRC mean
Binary 11 0.953 0.965 0.943 0.911 0.942 0.874 0.949 0.890 0.717 0.905

13 0.939 0.962 0.946 0.903 0.938 0.894 0.937 0.880 0.735 0.904
15 0.948 0.963 0.947 0.913 0.937 0.883 0.952 0.896 0.704 0.905
17 0.938 0.962 0.947 0.912 0.934 0.879 0.951 0.894 0.696 0.901
19 0.888 0.960 0.949 0.916 0.935 0.869 0.951 0.894 0.695 0.895

mean 0.933 0.962 0.946 0.911 0.937 0.880 0.948 0.891 0.709
CTF 11 0.801 0.813 0.759 0.871 0.786 0.837 0.892 0.850 0.583 0.799

13 0.795 0.795 0.735 0.864 0.774 0.792 0.884 0.849 0.576 0.785
15 0.779 0.776 0.775 0.873 0.762 0.831 0.873 0.857 0.586 0.790
17 0.744 0.770 0.746 0.878 0.750 0.807 0.867 0.854 0.621 0.782
19 0.764 0.761 0.748 0.875 0.718 0.815 0.854 0.850 0.623 0.779

mean 0.777 0.783 0.753 0.872 0.758 0.816 0.874 0.852 0.598
BinCTF 11 0.946 0.958 0.937 0.907 0.941 0.888 0.949 0.892 0.711 0.903

13 0.946 0.957 0.937 0.910 0.941 0.919 0.950 0.895 0.698 0.906
15 0.943 0.954 0.935 0.908 0.941 0.867 0.948 0.899 0.682 0.897
17 0.941 0.954 0.935 0.907 0.937 0.883 0.946 0.894 0.669 0.896
19 0.944 0.954 0.931 0.911 0.929 0.869 0.945 0.893 0.692 0.896

mean 0.944 0.955 0.935 0.909 0.938 0.885 0.948 0.895 0.690
BinCTF2 11 0.946 0.958 0.936 0.907 0.941 0.890 0.949 0.891 0.712 0.903

13 0.946 0.956 0.935 0.910 0.938 0.857 0.950 0.894 0.692 0.897
15 0.943 0.955 0.937 0.907 0.940 0.890 0.949 0.896 0.667 0.898
17 0.942 0.955 0.932 0.905 0.937 0.872 0.947 0.893 0.652 0.893
19 0.942 0.954 0.928 0.908 0.938 0.887 0.946 0.897 0.680 0.898

mean 0.944 0.956 0.934 0.907 0.939 0.879 0.948 0.894 0.681
CTF2 11 0.804 0.816 0.769 0.874 0.790 0.837 0.892 0.853 0.591 0.803

13 0.791 0.795 0.757 0.877 0.771 0.860 0.886 0.854 0.593 0.798
15 0.779 0.776 0.775 0.873 0.762 0.831 0.873 0.857 0.586 0.790
17 0.772 0.770 0.754 0.876 0.750 0.807 0.867 0.854 0.621 0.786
19 0.764 0.761 0.748 0.875 0.718 0.815 0.854 0.850 0.623 0.779

mean 0.782 0.783 0.761 0.875 0.758 0.830 0.874 0.853 0.603
t-BinCTF 11 0.957 0.966 0.960 0.917 0.952 0.880 0.954 0.905 0.879 0.930

13 0.961 0.968 0.959 0.921 0.952 0.900 0.954 0.910 0.883 0.934
15 0.959 0.967 0.965 0.921 0.960 0.906 0.954 0.908 0.897 0.937
17 0.960 0.967 0.968 0.923 0.957 0.906 0.956 0.908 0.884 0.937
19 0.965 0.967 0.972 0.929 0.958 0.911 0.955 0.913 0.886 0.939

mean 0.960 0.967 0.965 0.922 0.956 0.901 0.954 0.909 0.886
t-BinCTF2 11 0.958 0.967 0.959 0.917 0.950 0.884 0.954 0.905 0.877 0.930

13 0.961 0.966 0.961 0.922 0.953 0.901 0.954 0.910 0.879 0.934
15 0.961 0.967 0.964 0.921 0.959 0.908 0.955 0.907 0.890 0.937
17 0.961 0.968 0.964 0.920 0.957 0.906 0.956 0.908 0.866 0.934
19 0.965 0.968 0.967 0.927 0.961 0.909 0.956 0.911 0.894 0.940

mean 0.961 0.967 0.963 0.921 0.956 0.902 0.955 0.908 0.881
t-CTF2 11 0.885 0.852 0.856 0.879 0.834 0.856 0.897 0.872 0.820 0.861

13 0.869 0.834 0.838 0.883 0.832 0.884 0.896 0.871 0.812 0.858
15 0.839 0.822 0.842 0.882 0.834 0.891 0.887 0.870 0.807 0.852
17 0.839 0.815 0.825 0.881 0.812 0.887 0.883 0.868 0.767 0.842
19 0.849 0.812 0.840 0.884 0.816 0.889 0.872 0.864 0.785 0.846

mean 0.856 0.827 0.840 0.882 0.825 0.881 0.887 0.869 0.798

in each specificity level (column) for each kinase or kinase
family is highlighted in yellow.) In any case, the prediction
performance shows that our methods are comparable with
other kinase-specific prediction tools at least.

IV. CONCLUSIONS

In this paper, we have proposed three new encoding scheme,
BinCTF, CTF2 and BinCTF2, and make feature selection on
each method. The numerical results show that BinCTF and
BinCTF2 preforms much better than CTF ecoding. While,
the CTF2 performs not always better than CTF. We conclude
that using CTF encoding scheme needn’t consider the dummy
amino acid which has no really chemical functions. Further-
more, the better performance of BinCTF indicates that we
should consider not only the specific amino acid but also the
chemical and physical characters of the amino acids when

developing new encoding scheme. Besides, feature selection
is proved has remarkable meaning in prediction, the average
AUC has improved a lot on each methods, so this process is
highly recommended. We also compare the performance of
different window size when predicting phosphorylation sites.
The results show that the window size should be set as 11 or
13, for over long will lead to decline on prediction accuracy.

In this paper, we use ensemble SVM as the classifier for
predicting the PTM sites. Future work can focus on compare
these encoding schemes using different classifier, such as ran-
dom forest, BayesSVM, decision tree and Conditional random
fields (CRFs) etc.
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TABLE IV
PERFORMANCE COMPARISON WITH EXISTING KINASE-SPECIFIC

PREDICTION TOOLS

Sp(%) 99.00 98.00 97.00 95.00 90.00
PKA

t-BinCTF Sn(%) 30.72 52.35 62.70 73.35 87.15
t-BinCTF2 Sn(%) 34.80 50.47 63.32 73.98 84.30

GPS2.1 Sn(%) 49.57 58.97 67.52 72.65 83.76
NetPhosK 1.0 Sn(%) 28.04 38.62 48.68 56.08 72.49

Musite Sn(%) 47.01 58.55 69.23 74.36 85.47
CK2

t-BinCTF Sn(%) 20.55 33.33 45.66 61.64 74.89
t-BinCTF2 Sn(%) 18.26 30.59 43.38 61.64 76.26

GPS2.1 Sn(%) 49.56 61.95 68.58 74.34 82.74
NetPhosK 1.0 Sn(%) 37.70 51.31 55.50 62.30 74.35

Musite Sn(%) 48.67 60.62 66.81 72.12 81.42
MAPK3

t-BinCTF Sn(%) 16.28 30.23 46.51 58.14 84.88
t-BinCTF2 Sn(%) 23.26 33.72 41.86 56.98 87.21

GPS2.1 Sn(%) 24.89 40.27 52.04 71.04 81.00
Musite Sn(%) 27.15 38.46 47.06 63.35 81.90
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